This work presents a strategy to design three-dimensional elastic periodic structures endowed with complete bandgaps, the first of which is ultra-wide, where the top limits of the first two bandgaps are overstepped in terms of wave transmission in the finite structure. Thus, subsequent bandgaps are merged, approaching the behaviour of a three-dimensional low-pass mechanical filter. This result relies on a proper organization of the modal characteristics, and it is validated by performing numerical and analytical calculations over the unit cell. A prototype of the analysed layout, made of Nylon by means of additive manufacturing, is experimentally tested to assess the transmission spectrum of the finite structure, obtaining good agreement with numerical predictions. The presented strategy paves the way for the development of a class of periodic structures to be used in robust and reliable wave attenuation over a wide frequency band.

1.
E.
Yablonovitch
,
T. J.
Gmitter
, and
K. M.
Leung
, “
Photonic band structure: The face-centered-cubic case employing nonspherical atoms
,”
Phys. Rev. Lett.
67
,
2295
(
1991
).
2.
J.
Joannopoulos
,
S.
Johnson
,
J.
Winn
, and
R.
Meade
,
Photonic Crystals: Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
2011
).
3.
P.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
(
Springer-Verlag
,
Berlin Heidelberg
,
2013
).
4.
V.
Laude
,
Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves
(
De Gruyter
,
2015
).
5.
M.
Maldovan
, “
Sound and heat revolutions in phononics
,”
Nature
503
,
209
(
2013
).
6.
L.
Wang
and
B.
Li
, “
Phononics gets hot
,”
Phys. World
21
,
27
(
2008
).
7.
F.
Meseguer
,
M.
Holgado
,
D.
Caballero
,
N.
Benaches
,
J.
Sanchez-Dehesa
,
C.
Lopez
, and
J.
Llinares
, “
Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal
,”
Phys. Rev. B
59
,
12169
(
1999
).
8.
A.
Palermo
,
S.
Krödel
,
A.
Marzani
, and
C.
Daraio
, “
Engineered metabarrier as shield from seismic surface waves
,”
Sci. Rep.
6
,
39356
(
2016
).
9.
A.
Colombi
,
D.
Colquitt
,
P.
Roux
,
S.
Guenneau
, and
R.
Craster
, “
A seismic metamaterial: The resonant metawedge
,”
Sci. Rep.
6
,
27717
(
2016
).
10.
D.
Colquitt
,
A.
Colombi
,
R. V.
Craster
,
P.
Roux
, and
S.
Guenneau
, “
Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction
,”
J. Mech. Phys. Solids
99
,
379
(
2017
).
11.
Y.
Achaoui
,
B.
Ungureanu
,
S.
Enoch
,
S.
Brûlè
, and
S.
Guenneau
, “
Seismic waves damping with arrays of inertial resonators
,”
Extreme Mech. Lett.
8
,
30
37
(
2016
).
12.
Y.
Achaoui
,
T.
Antonakakis
,
S.
Brûlè
,
R. V.
Craster
,
S.
Enoch
, and
S.
Guenneau
, “
Clamped seismic metamaterials: Ultra-low frequency stop bands
,”
New J. Phys.
19
,
063022
(
2017
).
13.
Y.
Pennec
and
B.
Djafari-Rouhani
, “
Fundamental properties of phononic crystal
,” in
Phononic Crystals: Fundamentals and Applications
, edited by
A.
Khelif
and
A.
Adibi
(
Springer, New York
,
NY
,
2016
), pp.
23
50
.
14.
T.
Delpero
,
S.
Schoenwald
,
A.
Zemp
, and
A.
Bergamini
, “
Structural engineering of three-dimensional phononic crystals
,”
J. Sound Vib.
363
,
156
165
(
2016
).
15.
F.
Lucklum
and
M.
Vellekoop
, “
Band gap characterization of complex unit cell geometries for 3D phononic crystals
,” in
2016 IEEE International Ultrasonics Symposium (IUS)
(
2016
), pp.
1
4
.
16.
S.
Babaee
,
P.
Wang
, and
K.
Bertoldi
, “
Three-dimensional adaptive soft phononic crystals
,”
J. Appl. Phys.
117
,
244903
(
2015
).
17.
L.
D'Alessandro
,
B.
Bahr
,
L.
Daniel
,
D.
Weinstein
, and
R.
Ardito
, “
Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves
,”
J. Comput. Phys.
344
,
465
484
(
2017
).
18.
L.
D'Alessandro
,
E.
Belloni
,
R.
Ardito
,
A.
Corigliano
, and
F.
Braghin
, “
Modeling and experimental verification of an ultra-wide bandgap in 3D solid-air phononic crystal
,”
Appl. Phys. Lett.
109
,
221907
(
2016
).
19.
SLS WhiteSinter ZARE srl, see http://www.zare.it/ for material characteristics.
20.
M.
Hussein
,
M.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
,
040802
(
2014
).
21.
L.
Brillouin
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
(
Dover Publications, Inc
.,
New York
,
1946
).
You do not currently have access to this content.