The continuous scaling and challenges in device integrations in modern portable electronic products have aroused many scientific interests, and a great deal of effort has been made in seeking solutions towards a more microminiaturized package assembled with smaller and more powerful components. In this study, an embedded light-erasable charge-trapping memory with a high-k dielectric stack (Al2O3/HfO2/Al2O3) and an atomically thin MoS2 channel has been fabricated and fully characterized. The memory exhibits a sufficient memory window, fast programming and erasing (P/E) speed, and high On/Off current ratio up to 107. Less than 25% memory window degradation is observed after projected 10-year retention, and the device functions perfectly after 8000 P/E operation cycles. Furthermore, the programmed device can be fully erased by incident light without electrical assistance. Such excellent memory performance originates from the intrinsic properties of two-dimensional (2D) MoS2 and the engineered back-gate dielectric stack. Our integration of 2D semiconductors in the infrastructure of light-erasable charge-trapping memory is very promising for future system-on-panel applications like storage of metadata and flexible imaging arrays.

1.
J.
Lee
,
Y. J.
Park
,
M.
Kim
,
C.
Yoon
,
J.
Kim
, and
K. H.
Kim
,
IEEE Trans. Microwave Theory Tech.
54
,
1667
(
2006
).
2.
R. R.
Tummala
and
V. K.
Madisetti
,
IEEE Des. Tests Comput.
16
,
48
(
1999
).
3.
K.
Chung
and
A.
Akinwande
, in
IEEE IEDM Technical Digest
(
2005
), p.
910
.
4.
L.
Zhang
,
T.
Wu
,
Y.
Guo
,
Y.
Zhao
,
X.
Sun
,
Y.
Wen
,
G.
Yu
, and
Y.
Liu
,
Sci. Rep.
3
,
1080
(
2013
).
5.
S. H.
Gu
,
C.
Hsu
,
T.
Wang
, and
W. P.
Lu
,
IEEE Trans. Electron Dev.
54
,
90
(
2007
).
6.
H. T.
Lue
,
Y. H.
Shih
,
K. Y.
Hsieh
, and
R.
Liu
,
IEEE Electron Dev. Lett.
25
,
816
(
2004
).
7.
H. T.
Lue
,
P. Y.
Du
,
S. Y.
Wang
,
K. Y.
Hsieh
,
R.
Liu
, and
C. Y.
Lu
,
IEEE Trans. Electron Dev.
55
,
2218
(
2008
).
8.
H.
Yin
,
S.
Kim
,
H.
Lim
, and
Y.
Min
,
IEEE Trans. Electron Dev.
55
,
2071
(
2008
).
9.
E. K.
Lai
,
H. T.
Lue
,
Y. H.
Hsiao
, and
J. Y.
Hsieh
, in
IEEE IEDM Technical Digest
(
2006
), p.
1
.
10.
H. W.
You
and
W. J.
Cho
,
Appl. Phys. Lett.
96
,
093506
(
2010
).
11.
X.
Zhu
,
Q.
Li
,
D. E.
Ioannou
,
D.
Gu
,
J. E.
Bonevich
,
H.
Baumgart
,
J. S.
Suehle
, and
C. A.
Richter
,
Nanotechnology
22
,
254020
(
2011
).
12.
X. G.
Wang
and
D. L.
Kwong
,
IEEE Trans. Electron Dev.
53
,
78
(
2006
).
13.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
14.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
,
Nat. Nanotechnol.
8
,
497
(
2013
).
15.
Y.
Wang
,
J. Z.
Ou
,
A.
Chrimes
,
B.
Carey
,
T.
Daeneke
,
M. M.
Alsaif
,
M.
Mortazavi
,
S.
Zhuiykov
,
N. V.
Medhekar
, and
M.
Bhaskaran
,
Nano Lett.
15
,
883
(
2015
).
16.
R.
Ganatra
and
Q.
Zhang
,
ACS Nano
8
,
4074
(
2014
).
17.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
18.
W.
Yang
,
Q. Q.
Sun
,
Y.
Geng
,
L.
Chen
,
P.
Zhou
,
S. J.
Ding
, and
D. W.
Zhang
,
Sci. Rep.
5
,
11921
(
2015
).
19.
X.
Wang
,
T. B.
Zhang
,
W.
Yang
,
H.
Zhu
,
L.
Chen
,
Q. Q.
Sun
, and
D. W.
Zhang
,
Appl. Phys. Lett.
110
,
053110
(
2017
).
20.
D.
Jena
and
A.
Konar
,
Phys. Rev. Lett.
98
,
136805
(
2007
).
21.
U. L.
Dong
,
H. J.
Lee
,
E. K.
Kim
,
H. W.
You
, and
W. J.
Cho
,
Appl. Phys. Lett.
100
,
072901
(
2012
).
22.
E.
Zhang
,
W.
Wang
,
C.
Zhang
,
Y.
Jin
,
G.
Zhu
,
Q.
Sun
,
D. W.
Zhang
,
P.
Zhou
, and
F.
Xiu
,
ACS Nano
9
,
612
(
2015
).
23.
J.
Yang
,
S.
Kim
,
W.
Choi
,
S. H.
Park
,
Y.
Jung
,
M. H.
Cho
, and
H.
Kim
,
ACS Appl. Mater. Interfaces
5
,
4739
(
2013
).
24.
H.
Liu
,
K.
Xu
,
X.
Zhang
, and
P. D.
Ye
,
Appl. Phys. Lett.
100
,
152115
(
2012
).
25.
S.
Bertolazzi
,
D.
Krasnozhon
, and
A.
Kis
,
ACS Nano
7
,
3246
(
2013
).
26.
J.
Wang
,
X.
Zou
,
X.
Xiao
,
L.
Xu
,
C.
Wang
,
C.
Jiang
,
J. C.
Ho
,
T.
Wang
,
J.
Li
, and
L.
Liao
,
Small
11
,
208
(
2015
).
27.
S.
McDonnell
,
B.
Brennan
,
A.
Azcatl
,
N.
Lu
,
H.
Dong
,
C.
Buie
,
J.
Kim
,
C. L.
Hinkle
,
M. J.
Kim
, and
R. M.
Wallace
,
ACS Nano
7
,
10354
(
2013
).
28.
A. D.
Bartolomeo
,
L.
Genovese
,
T.
Foller
,
F.
Giubileo
,
G.
Luongo
,
L.
Croin
,
S.-J.
Liang
,
L. K.
Ang
, and
M.
Schleberger
,
Nanotechnology
28
,
214002
(
2017
).
29.
W.
Choi
,
M. Y.
Cho
,
A.
Konar
,
J. H.
Lee
,
G. B.
Cha
,
S. C.
Hong
,
S.
Kim
,
J.
Kim
,
D.
Jena
, and
J.
Joo
,
Adv. Mater.
24
,
5832
(
2012
).
30.
S.
Chen
,
X. M.
Cui
,
S. J.
Ding
,
Q. Q.
Sun
,
T.
Nyberg
,
S. L.
Zhang
, and
W.
Zhang
,
IEEE Electron Dev. Lett.
34
,
1008
(
2013
).
31.
J. T.
Li
,
L. C.
Liu
,
P. H.
Ke
,
J. S.
Chen
, and
J. S.
Jeng
,
J. Phys. D.: Appl. Phys.
49
,
115104
(
2016
).

Supplementary Material

You do not currently have access to this content.