In both light optics and electron optics, the amplitude of a wave scattered by an object is an observable that is usually recorded in the form of an intensity distribution in a real space image or a diffraction image. In contrast, retrieval of the phase of a scattered wave is a well-known challenge, which is usually approached by interferometric or numerical methods. In electron microscopy, as a result of constraints in the lens setup, it is particularly difficult to retrieve the phase of a diffraction image. Here, we use a “defocused beam” generated by a nanofabricated hologram to form a reference wave that can be interfered with a diffracted beam. This setup provides an extended interference region with the sample wavefunction in the Fraunhofer plane. As a case study, we retrieve the phase of an electron vortex beam. Beyond this specific example, the approach can be used to retrieve the wavefronts of diffracted beams from a wide range of samples.

1.
L.
Reimer
and
H.
Kohl
,
Transmission Electron Microscopy: Physics of Image Formation
(
Springer
,
New York
,
2008
), Vol.
36
.
2.
P. A.
Midgley
and
R. E.
Dunin-Borkowski
,
Nat. Mater.
8
,
271
(
2009
).
3.
M. J.
Hÿtch
,
F.
Houdellier
,
F.
Hüe
, and
E.
Snoeck
,
Nature
453
,
1086
(
2008
).
4.
F.
Houdellier
and
M. J.
Hÿtch
,
Ultramicroscopy
108
,
285
(
2008
).
5.
K. Y.
Bliokh
,
Y. P.
Bliokh
,
S.
Savel'ev
, and
F.
Nori
,
Phys. Rev. Lett.
99
,
190404
(
2007
).
6.
M.
Uchida
and
A.
Tonomura
,
Nature
464
,
737
(
2010
).
7.
J.
Verbeeck
,
H.
Tian
, and
P.
Schattschneider
,
Nature
467
,
301
(
2010
).
8.
B. J.
McMorran
,
A.
Agrawal
,
I. M.
Anderson
,
A. A.
Herzing
,
H. J.
Lezec
,
J. J.
McClelland
, and
J.
Unguris
,
Science
331
,
192
(
2011
).
9.
J.
Harris
,
V.
Grillo
,
E.
Mafakheri
,
G. C.
Gazzadi
,
S.
Frabboni
,
R. W.
Boyd
, and
E.
Karimi
, “
Structured quantum waves
,”
Nat. Phys.
11
,
629
(
2015
).
10.
J. F.
Nye
and
M. V.
Berry
,
Proc. R. Soc. Lond., A
336
,
165
(
1974
).
11.
D.
Gabor
,
Nature
161
,
777
(
1948
).
13.
R. M.
Glaeser
,
Rev. Sci. Instrum.
84
,
111101
(
2013
).
14.
G.
Möllenstedt
and
H.
Duker
,
Naturwissenschaft
42
,
41
(
1955
).
15.
G. F.
Missiroli
,
G.
Pozzi
, and
U.
Valdrè
,
J. Phys. E: Sci. Instrum.
14
,
649
(
1981
).
16.
H.
Lichte
,
Philos. Trans. R. Soc. London., A
360
,
897
920
(
2002
).
17.
A.
Tonomura
,
Rev. Mod. Phys.
59
,
639
(
1987
).
18.
R. E.
Dunin-Borkowski
,
M. R.
McCartney
,
R. B.
Frankel
,
D. A.
Bazylinski
,
M.
Posfai
, and
P. R.
Buseck
,
Science
282
,
1868
(
1998
).
19.
G.
Pozzi
,
Adv. Imaging Electron Phys.
123
,
207
(
2002
).
20.
H.
Lichte
,
Rep. Prog. Phys.
71
,
016102
(
2008
).
21.
C. T.
Koch
and
A.
Lubk
,
Ultramicroscopy
110
,
460
(
2010
).
22.
J.
Miao
,
P.
Charalambous
,
J.
Kirz
, and
D.
Sayre
,
Nature
400
,
342
(
1999
).
23.
H. N.
Chapman
and
K. A.
Nugent
,
Nat. Photonics
4
,
833
(
2010
).
24.
S.
Marchesini
,
Rev. Sci. Instrum.
78
,
011301
(
2007
).
25.
J. M.
Zuo
,
I.
Vartanyants
,
M.
Gao
,
R.
Zhang
, and
L. A.
Nagahara
,
Science
300
,
1419
(
2003
).
26.
P. D.
Nellist
,
B. C.
McCallum
, and
J. M.
Rodenburg
,
Nature
374
,
630
(
1995
).
27.
F.
Hue
,
J. M.
Rodenburg
,
A. M.
Maiden
,
F.
Sweeney
, and
P. A.
Midgley
,
Phys. Rev. B
82
,
121415
(
2010
).
28.
M. J.
Humphry
,
B.
Kraus
,
A. C.
Hurst
,
A. M.
Maiden
, and
J. M.
Rodenburg
,
Nat. Commun.
3
,
730
(
2012
).
29.
S.
Hovmoller
,
A.
Siögren
,
G.
Farrants
,
M.
Sundberg
, and
B.-O.
Marinder
,
Nature
311
,
238
(
1984
).
30.
V.
Grillo
,
G. C.
Gazzadi
,
E.
Karimi
,
E.
Mafakheri
,
R. W.
Boyd
, and
S.
Frabboni
,
Appl. Phys. Lett.
104
,
043109
(
2014
).
31.
V.
Grillo
,
E.
Karimi
,
G. C.
Gazzadi
,
S.
Frabboni
,
M. R.
Dennis
, and
R. W.
Boyd
,
Phys. Rev. X
4
,
011013
(
2014
).
32.
V.
Grillo
,
G. C.
Gazzadi
,
E.
Mafakheri
,
S.
Frabboni
,
E.
Karimi
, and
R. W.
Boyd
,
Phys. Rev. Lett.
114
,
034801
(
2015
).
33.
T. R.
Harvey
,
J. S.
Pierce
,
A. K.
Agrawal
,
P.
Ercius
,
M.
Linck
, and
B. J.
McMorran
,
New J. Phys.
16
,
093039
(
2014
).
34.
A.
Lubk
,
G.
Guzzinati
,
F.
Börrnert
, and
J.
Verbeeck
,
Phys. Rev. Lett.
111
,
173902
(
2013
).
35.
K. A.
Nugent
,
A. G.
Peele
,
H. M.
Quiney
, and
H. N.
Chapman
,
Acta Crystallogr. A
61
,
373
(
2005
).
36.
V.
Grillo
,
J.
Harris
,
G. C.
Gazzadi
,
R.
Balboni
,
E.
Mafakheri
,
M. R.
Dennis
,
S.
Frabboni
,
R. W.
Boyd
, and
E.
Karimi
,
Ultramicroscopy
166
,
48
(
2016
).
37.
E.
Guehrs
,
A. M.
Stadler
,
S.
Flewett
,
S.
Frömmel
,
J.
Geilhufe
,
B.
Pfau
,
T.
Rander
,
S.
Schaffert
,
G.
Büldt
, and
S.
Eisebitt
,
New J. Phys.
14
,
013022
(
2012
).
38.
S.
Eisebitt
,
J.
Lüning
,
W. F.
Schlotter
,
M.
Lörgen
,
O.
Hellwig
,
W.
Eberhardt
, and
J.
Stöhr
,
Nature
432
,
885
(
2004
).
39.
E.
Bolduc
,
N.
Bent
,
E.
Santamato
,
E.
Karimi
, and
R. W.
Boyd
,
Opt. Lett.
38
,
3546
(
2013
).
40.
V.
Grillo
,
E.
Karimi
,
R.
Balboni
,
G. C.
Gazzadi
,
F.
Venturi
,
S.
Frabboni
,
J. S.
Pierce
,
B. J.
McMorran
, and
R. W.
Boyd
,
Microsc. Microanal.
21
,
503
(
2015
).
41.
A characterization of OAM purity in our hologram as in Ref. 29 with the method in Ref. 31 led to a typical purity in OAM decomposition of 80%.
You do not currently have access to this content.