In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz–21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

1.
M.
Dragoman
and
M.
Aldrigo
,
Appl. Phys. Lett.
109
,
113105
(
2016
).
2.
M. J.
Nie
,
X. X.
Yang
,
G. N.
Tan
, and
B.
Han
,
IEEE Antennas Wireless Propag. Lett.
14
,
986
989
(
2015
).
3.
D. R.
Smith
,
W. J.
Padilla
,
D. C.
Vier
,
S. C.
Nemat-Nasser
, and
S.
Schultz
,
Phys. Rev. Lett.
84
,
4184
4187
(
2000
).
4.
X.
Liu
,
C.
Lan
,
K.
Bi
,
B.
Li
,
Q.
Zhao
, and
J.
Zhou
,
Appl. Phys. Lett.
109
,
062902
(
2016
).
5.
K.-T.
Lee
,
C.
Ji
, and
L. J.
Guo
,
Appl. Phys. Lett.
108
,
031107
(
2016
).
6.
S.
Liu
,
H.
Chen
, and
T. J.
Cui
,
Appl. Phys. Lett.
106
,
151601
(
2015
).
7.
J.
Zhu
,
Z.
Ma
,
W.
Sun
,
F.
Ding
,
Q.
He
,
L.
Zhou
, and
Y.
Ma
,
Appl. Phys. Lett.
105
,
021102
(
2014
).
8.
C.
Shi
,
X.
Zang
,
Y.
Wang
,
L.
Chen
,
B.
Cai
, and
Y.
Zhu
,
Appl. Phys. Lett.
105
,
031104
(
2014
).
9.
O. M.
Ramahi
,
T. S.
Almoneef
,
M.
AlShareef
, and
M. S.
Boybay
,
Appl. Phys. Lett.
101
,
173903
(
2012
).
10.
T. S.
Almoneef
and
O. M.
Ramahi
,
Appl. Phys. Lett.
106
,
153902
(
2015
).
11.
X.
Duan
,
X.
Chen
, and
L.
Zhou
,
AIP Adv.
6
,
125020
(
2016
).
12.
B.
Alavikia
,
T. S.
Almoneef
, and
O. M.
Ramahi
,
Appl. Phys. Lett.
104
,
163903
(
2014
).
13.
B.
Alavikia
,
T. S.
Almoneef
, and
O. M.
Ramahi
,
Appl. Phys. Lett.
107
,
033902
(
2015
).
14.
B.
Alavikia
,
T. S.
Almoneef
, and
O. M.
Ramahi
,
Appl. Phys. Lett.
107
,
243902
(
2015
).
15.
M. E.
Badawe
and
O.
Ramahi
, in
IEEE 17th Annual Wireless and Microwave Technology Conference WAMICON
(
2016
), pp.
1
3
.
16.
Y. Z.
Cheng
,
C.
Fang
,
Z.
Zhang
,
B.
Wang
,
J.
Chen
, and
R. Z.
Gong
, in
Progress in Electromagnetic Research Symposium (PIERS)
(
2016
), pp.
1910
1914
.
17.
S. D.
Assimonis
,
T.
Kollatou
,
D.
Tsiamitros
,
D.
Stimoniaris
,
T.
Samaras
, and
J. N.
Sahalos
, in
9th International Conference on Electrical and Electronics Engineering (ELECO)
(
2015
), pp.
320
323
.
18.
H.-T.
Zhong
,
X.-X.
Yang
,
C.
Tan
, and
K.
Yu
,
Appl. Phys. Lett.
109
,
253904
(
2016
).
19.
H.
Zhong
and
X.
Yang
, in
International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)
(
2017
), pp.
125
128
.
You do not currently have access to this content.