Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

1.
J.-W.
Kim
,
H.
Takao
,
K.
Sawada
, and
M.
Ishida
,
Sensors
7
,
1387
(
2007
).
2.
K. A.
Cook-Chennault
,
N.
Thambi
, and
A. M.
Sastry
,
Smart Mater. Struct.
17
,
043001
(
2008
).
3.
J. A.
Paradiso
and
T.
Starner
,
IEEE Pervasive Comput.
4
,
18
27
(
2005
).
4.
S.
Priya
and
D. J.
Inman
, in
Energy Harvesting Technologies
, edited by
S.
Priya
and
D. J.
Inman
(
Springer
,
2008
), Vol.
24
, p.
544
.
5.
L.
Gammaitoni
,
I.
Neri
, and
H.
Vocca
,
Appl. Phys. Lett.
94
,
164102
(
2009
).
6.
F.
Cottone
,
H.
Vocca
, and
L.
Gammaitoni
,
Phys. Rev. Lett.
102
,
080601
(
2009
).
7.
M. F.
Daqaq
,
J. Sound Vib.
329
,
3621
(
2010
).
8.
D.
Mallick
,
A.
Amann
, and
S.
Roy
,
Phys. Rev. Lett.
117
,
197701
(
2016
).
9.
A.
Erturk
,
J.
Hoffman
, and
D. J.
Inman
,
Appl. Phys. Lett.
94
,
254102
(
2009
).
10.
A. F.
Arrieta
,
P.
Hagedorn
,
A.
Erturk
, and
D. J.
Inman
,
Appl. Phys. Lett.
97
,
104102
(
2010
).
11.
J.
Cao
,
S.
Zhou
,
W.
Wang
, and
J.
Lin
,
Appl. Phys. Lett.
106
,
173903
(
2015
).
12.
S.
Zhou
,
J.
Cao
,
D. J.
Inman
,
J.
Lin
, and
D.
Li
,
J. Sound Vib.
373
,
223
(
2016
).
13.
R.
Masana
and
M. F.
Daqaq
,
J. Sound Vib.
330
,
6036
(
2011
).
14.
M. F.
Daqaq
,
Nonlinear Dyn.
69
,
1063
(
2012
).
15.
R.
Harne
and
K.
Wang
,
J. Intell. Mater. Syst. Struct.
25
,
937
(
2014
).
16.
R. L.
Harne
and
K. W.
Wang
,
Smart Mater. Struct.
22
,
23001
(
2013
).
17.
S.
Zhou
,
J.
Cao
,
D. J.
Inman
,
S.
Liu
,
W.
Wang
, and
J.
Lin
,
Appl. Phys. Lett.
106
,
093901
(
2015
).
18.
C.
Lan
,
L.
Tang
, and
W.
Qin
,
Eur. Phys. J. Appl. Phys.
79
,
20902
(
2017
).
19.
G.
Sebald
,
H.
Kuwano
,
D.
Guyomar
, and
B.
Ducharne
,
Smart Mater. Struct.
20
,
102001
(
2011
).
20.
J. P.
Udani
and
A. F.
Arrieta
, “
Efficient Potential Well Escape for Bi-Stable Duffing Oscillators
,” Nonlinear Dyn. (submitted).
21.
L. N.
Virgin
,
R. H.
Plaut
, and
C. C.
Cheng
,
Int. J. Non-Linear Mech.
27
,
357
(
1992
).
22.
H. B.
Stewart
,
J. M. T.
Thompson
,
Y.
Ueda
, and
A. N.
Lansbury
,
Phys. D: Nonlinear Phenom.
85
,
259
(
1995
).
23.
J.
Thompson
,
Proc. R. Soc. London, Ser. A
421
,
195
(
1989
).
24.
R.
Masana
and
M. F.
Daqaq
,
J. Appl. Phys.
111
,
044501
(
2012
).
25.
F.
Mattioni
,
P. M.
Weaver
, and
M. I.
Friswell
,
Int. J. Solids Struct.
46
,
151
(
2009
).
26.
A. F.
Arrieta
,
T.
Delpero
,
A. E.
Bergamini
, and
P.
Ermanni
,
Appl. Phys. Lett.
102
,
173904
(
2013
).

Supplementary Material

You do not currently have access to this content.