The effects of Mg doping on the magnetic and AC self-heating temperature rising characteristics of γ-Fe2O3 superparamagnetic nanoparticles (SPNPs) were investigated for hyperthermia applications in biomedicine. The doping concentration of nonmagnetic Mg2+ cation was systematically controlled from 0 to 0.15 at. % in Mgx-γFe2O3 SPNPs during chemically and thermally modified one-pot thermal decomposition synthesis under bubbling O2/Ar gas mixture. It was empirically observed that the saturation magnetization (Ms) and the out-of-phase magnetic susceptibility (χm) of Mgx-γFe2O3 SPNPs were increased by increasing the Mg2+ cation doping concentration from 0.05 to 0.13 at. %. Correspondingly, the AC magnetically induced self-heating temperature (Tac,max) in solid state and the intrinsic loss power in water were increased up to 184 °C and 14.2 nH m2 kg−1 (Mgx-γFe2O3, x = 0.13), respectively, at the biologically and physiologically safe range of AC magnetic field (Happl × fappl = 1.2 × 109 A m−1 s−1). All the chemically and physically analyzed results confirmed that the dramatically improved AC magnetic induction heating characteristics and the magnetic properties of Mgx-γFe2O3 SPNPs (x = 0.13) are primarily due to the significantly enhanced magnetic susceptibility (particularly, χm) and the improved AC/DC magnetic softness (lower AC/DC magnetic anisotropy) resulting from the systematically controlled nonmagnetic Mg2+ cation concentrations and distributions (occupation ratio) in the Fe vacancy sites of γ-Fe2O3 (approximately 12% vacancy), instead of typically well-known Fe3O4 (no vacancy) SPNPs. The cell viability and biocompatibility with U87 MG cell lines demonstrated that Mgx-γFe2O3 SPNPs (x = 0.13) has promising bio-feasibility for hyperthermia agent applications.

1.
M.
Johannsen
,
U.
Gneveckow
,
L.
Eckelt
,
A.
Feussner
,
N.
Waldöfner
,
R.
Scholz
,
S.
Deger
,
P.
Wust
,
S. A.
Loening
, and
A.
Jordan
,
Int. J. Hyperthermia
21
,
637
(
2005
).
2.
Q. A.
Pankhurst
,
J.
Connolly
,
S. K.
Jones
, and
J.
Dobson
,
J. Phys. D: Appl. Phys
36
,
R167
(
2003
).
3.
P.
Bruners
,
T.
Braunschweig
,
M.
Hodenius
,
H.
Pietsch
,
T.
Penzkofer
,
M.
Baumman
,
R. W.
Gunther
,
T.
Schmitz-Rode
, and
A. H.
Mahnken
,
Cardiovasc. Interventional Radiol.
33
,
127
(
2010
).
4.
K.
Hayashi
,
M.
Nakamura
,
W.
Sakomoto
,
T.
Yogo
,
H.
Miki
,
S.
Ozaki
,
M.
Abe
,
T.
Matsumoto
, and
K.
Ishimura
,
Theranostics
3
,
366
(
2013
).
5.
J.
Lee
,
J.-t.
Jang
,
J. S.
Choi
,
S. H.
Moon
,
S. H.
Noh
,
J. W.
Kim
,
J. G.
Kim
,
I. S.
Kim
,
K. I.
Park
, and
J.
Cheon
,
Nat. Nanotechnol.
6
,
418
(
2011
).
6.
R.
Hergt
and
S.
Dutz
,
J. Magn. Magn. Mater.
311
,
187
(
2007
).
7.
R.
Hergt
,
W.
Andrä
,
C. G.
d'Ambly
,
I.
Hilger
,
W.
Kaiser
,
U.
Richter
, and
H. G.
Schmidt
,
IEEE Trans. Magn.
34
,
3745
(
1998
);
M.
Jeun
,
S.
Lee
,
J. K.
Kang
,
A.
Tomitaka
,
K. W.
Kang
,
Y. I.
Kim
,
Y.
Takemura
,
K.-W.
Chung
,
J.
Lwak
, and
S.
Bae
,
Appl. Phys. Lett.
100
,
092406
(
2012
).
8.
K.
Park
,
S.
Lee
,
E.
Kang
,
K.
Kim
,
K.
Choi
, and
I. C.
Kwon
,
Adv. Funct. Mater.
19
,
1553
(
2009
).
9.
R. E.
Rosenweig
,
J. Magn. Magn. Mater.
252
,
370
(
2002
).
10.
Q.
Liu
,
Z.
Xu
,
J. A.
Finch
, and
R.
Egerton
,
Chem. Mater.
10
,
3936
(
1998
).
11.
A. K.
Gupta
and
M.
Gupta
,
Biomaterials
26
,
3995
(
2005
).
12.
J. P.
Fortin
,
C.
Wilhelm
,
J.
Servais
,
C.
Ménager
,
J. C.
Bacri
, and
F.
Gazeau
,
J. Am. Chem. Soc.
129
,
2628
(
2007
).
13.
S.
Chen
,
C.
Chiang
, and
S.
Hsieh
,
J. Magn. Magn. Mater.
322
,
247
(
2010
).
14.
H.
Shokrollahi
,
I.
Sharifi
, and
A.
Amiri
,
J. Magn. Magn. Mater.
324
,
903
(
2011
).
15.
M.
Jeun
,
S.
Bae
,
A.
Tomitaka
,
Y.
Takemura
,
K. H.
Park
,
S. H.
Park
, and
K. W.
Chung
,
Appl. Phys. Lett.
95
,
082501
(
2009
).
16.
J.-t.
Jang
,
H.
Nah
,
J. H.
Lee
,
S. H.
Moon
,
M. G.
Kim
, and
J.
Cheon
,
Angew. Chem. Int. Ed.
48
,
1234
(
2009
).
17.
T.
Bala
,
C. R.
Sankar
,
M.
Baidakova
,
V.
Osipov
,
T.
Enoki
,
A.
Joy
,
V.
Prasad
, and
M.
Sastry
,
Langmuir
21
,
10638
(
2005
);
[PubMed]
Q.
Chen
,
A. J.
Rondinone
,
B. C.
Chakoumakos
, and
Z. J.
Zhang
,
J. Magn. Magn. Mater.
194
,
1
(
1999
).
18.
N.-E. L.
Saris
,
E.
Mervaala
,
H.
Karppanen
,
J. A.
Khawaja
, and
A.
Lewenstam
,
Clin. Chim. Acta
294
,
1
(
2000
).
19.
Y.
Gao
,
Y. J.
Kim
,
S.
Thevuthasan
,
A.
Chambers
, and
P.
Lubitz
,
J. Appl. Phys.
81
,
3253
(
1997
);
B.
Gillbert
,
J. E.
Katz
,
J. D.
Denlinger
,
Y.
Yin
,
R.
Falcone
, and
G. A.
Waychnas
,
J. Phys. Chem. C
114
,
21994
(
2010
).
20.
M.
Jeun
,
S.
Lee
,
Y. J.
Kim
,
H. Y.
Ji
,
K. H.
Park
,
S. H.
Paek
,
Y.
Takemura
, and
S.
Bae
,
IEEE Trans. Nanotechnol.
12
,
314
(
2013
).
21.
R. R.
Wildeboer
,
P.
Southern
, and
Q. A.
Pankhurst
,
J. Phys. D: Appl. Phys.
47
,
495003
(
2014
).
You do not currently have access to this content.