High-frequency enhancement-mode (E-mode) AlGaN/GaN high-electron-mobility transistors (HEMTs) with plasma oxidation technology (POT) were fabricated through plasma-enhanced chemical vapor deposition. POT enables the formation of a thin oxide layer in the gate region, which decreases the gate leakage by at least two orders of magnitude compared with conventional recessed gate HEMTs. Ultra-low leakage was achieved in the fabricated device, with Ioff = 9.5 × 10−7 mA/mm and a high ON/OFF ratio of over 109. Good suppression of current collapse was obtained after the application of POT in the access region. The enhancement-mode AlGaN/GaN HEMTs with POT showed an outstanding performance, with a Vth of 0.4 V, a maximum drain current of 965 mA/mm, and an fmax of 272 GHz.

1.
D. S.
Lee
,
Z.
Liu
, and
T.
Palacios
,
Jpn. J. Appl. Phys., Part 1
53
,
100212
(
2014
).
2.
Y.
Hao
,
L.
Yang
,
X. H.
Ma
,
J. G.
Ma
,
M. Y.
Cao
,
C. Y.
Pan
,
C.
Wang
, and
J. C.
Zhang
,
IEEE Electron Device Lett.
32
,
626
(
2011
).
3.
S. B.
Wu
,
J. F.
Gao
,
W. B.
Wang
, and
J. Y.
Zhang
,
IEEE Trans. Electron Devices
63
,
3882
(
2016
).
4.
J. W.
Chung
,
W. E.
Hoke
,
E. M.
Chumbes
, and
T.
Palacios
,
IEEE Electron Device Lett.
31
,
195
(
2010
).
5.
T.
Palacios
,
A.
Chakraborty
,
S.
Rajan
,
C.
Poblenz
,
S.
Keller
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
26
,
781
(
2005
).
6.
S. L.
Zhao
,
J. S.
Xue
,
P.
Zhang
,
B.
Hou
,
J.
Luo
,
X. J.
Fan
,
J. C.
Zhang
,
X. H.
Ma
, and
Y.
Hao
,
Appl. Phys. Express
7
,
071002
(
2014
).
7.
Y.
Cai
,
Y. G.
Zhou
,
K. M.
Lau
, and
K. J.
Chen
,
IEEE Trans. Electron Devices
53
,
2207
(
2006
).
8.
B.
Lu
,
E.
Matioli
, and
T.
Palacios
,
IEEE Electron Device Lett.
33
,
360
(
2012
).
9.
T.
Mizutani
,
M.
Ito
,
S.
Kishimoto
, and
F.
Nakamura
,
IEEE Electron Device Lett.
28
,
549
(
2007
).
10.
Q.
Zhou
,
L.
Liu
,
A. B.
Zhang
,
B. W.
Chen
,
Y.
Jin
,
Y. Y.
Shi
,
Z. H.
Wang
,
W. J.
Chen
, and
B.
Zhang
,
IEEE Electron Device Lett.
37
,
165
(
2016
).
11.
T.
Palacios
,
C. S.
Suh
,
A.
Chakraborty
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
27
,
428
(
2006
).
12.
K. W.
Kim
,
S. D.
Jung
,
D. S.
Kim
,
H. S.
Kang
,
K. S.
Im
,
J. J.
Oh
,
J. B.
Ha
,
J. K.
Shin
, and
J. H.
Lee
,
IEEE Electron Device Lett.
32
,
1376
(
2011
).
13.
M.
Tajima
,
J.
Kotani
, and
T.
Hashizume
,
Jpn. J. Appl. Phys., Part 1
48
,
020203
(
2009
).
14.
Y.
Hori
,
Z.
Yatabe
, and
T.
Hashizume
,
J. Appl. Phys.
114
,
244503
(
2013
).
15.
H. C.
Chiu
,
C. W.
Yang
,
C. H.
Chen
,
J. S.
Fu
, and
F. T.
Chien
,
Appl. Phys. Lett.
99
,
153508
(
2011
).
16.
Y. H.
Choi
,
S. J.
Kim
,
T. S.
Kim
,
M. K.
Kim
,
O.
Seok
, and
M. K.
Han
,
Jpn. J. Appl. Phys.
49
,
04DF06
(
2010
).
17.
J. W.
Chung
,
J. C.
Roberts
,
E. L.
Piner
, and
T.
Palacios
,
IEEE Electron Device Lett.
29
,
1196
(
2008
).
18.
J. W.
Chung
,
X.
Zhao
, and
T.
Palacios
, in
IEEE Device Research Conference,
2007
, p.
111
.
19.
G. C.
Zhu
,
H. B.
Wang
,
Y. M.
Wang
,
X. J.
Feng
, and
A. M.
Song
,
Appl. Phys. Lett.
109
,
113503
(
2016
).
You do not currently have access to this content.