The inability to scale supply voltage and hence reduce power consumption remains a serious challenge in modern nanotransistors. This arises primarily because the Sub-threshold Swing (SS) of the thermionic MOSFET, a measure of its switching efficiency, is restricted by the Boltzmann limit (kBT/q = 60 mV/dec at 300 K). Tunneling FETs, the most promising candidates to circumvent this limit, employ band-to-band tunneling, yielding very low OFF currents and steep SS but at the expense of severely degraded ON currents. In a completely different approach, by introducing concurrent tuning of thermionic and tunneling components through metal/semiconductor Schottky junctions, we achieve an amalgamation of steep SS and high ON currents in the same device. We demonstrate sub-thermionic transport sustained up to 4 decades with SSmin ∼ 8.3 mV/dec and SSavg ∼ 37.5(25) mV/dec for 4(3) dec in few layer MoS2 dual gated FETs (planar and CMOS compatible) using tunnel injected Schottky contacts for a highly scaled drain voltage of 10 mV, the lowest for any sub-thermionic devices. Furthermore, the same devices can be tuned to operate in the thermionic regime with a field effect mobility of ∼84.3 cm2 V−1 s−1. A detailed mechanism involving the independent control of the Schottky barrier height and width through efficient device architecture and material processing elucidates the functioning of these devices. The Gate Tunable Thermionic Tunnel FET can function at a supply voltage of as low as 0.5 V, reducing power consumption dramatically.

1.
R.
Chau
,
B.
Doyle
,
S.
Datta
,
J.
Kavalieros
, and
K.
Zhang
,
Nat. Mater.
6
(
11
),
810
812
(
2007
).
2.
R. G.
Dreslinski
,
M.
Wieckowski
,
D.
Blaauw
,
D.
Sylvester
, and
T.
Mudge
,
Proc. IEEE
98
(
2
),
253
266
(
2010
).
3.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
4.
S.
Salahuddin
and
S.
Datta
,
Nano Lett.
8
(
2
),
405
410
(
2008
).
5.
E. H.
Toh
,
G. H.
Wang
,
M.
Zhu
,
C.
Shen
,
L.
Chan
,
G. Q.
Lo
,
C. H.
Tung
,
D.
Sylvester
,
C. H.
Heng
,
G.
Samudra
, and
Y. C.
Yeo
,
Tech. Dig. - Int. Electron Devices Meet.
2007
,
195
198
.
6.
J. P.
Leburton
,
J.
Kolodzey
, and
S.
Briggs
,
Appl. Phys. Lett.
52
(
19
),
1608
1610
(
1988
).
7.
A. M.
Ionescu
and
H.
Riel
,
Nature
479
(
7373
),
329
337
(
2011
).
8.
K.
Jeon
,
W. Y.
Loh
,
P.
Patel
,
C. Y.
Kang
,
J.
Oh
,
A.
Bowonder
,
C.
Park
,
C. S.
Park
,
C.
Smith
,
P.
Majhi
, and
H. H.
Tseng
, in
2010 Symposium on VLSI Technology (VLSIT)
(IEEE,
2010
), pp.
121
122
.
9.
Z. X.
Chen
,
H. Y.
Yu
,
N.
Singh
,
N. S.
Shen
,
R. D.
Sayanthan
,
G. Q.
Lo
, and
D. L.
Kwong
,
IEEE Electron Device Lett.
30
(
7
),
754
756
(
2009
).
10.
K.
Tomioka
,
M.
Yoshimura
, and
T.
Fukui
, in
Symposium on VLSI Technology
(IEEE,
2012
), pp.
47
48
.
11.
D.
Sarkar
,
X.
Xie
,
W.
Liu
,
W.
Cao
,
J.
Kang
,
Y.
Gong
,
S.
Kraemer
,
P. M.
Ajayan
, and
K.
Banerjee
,
Nature
526
(
7571
),
91
95
(
2015
).
12.
D.
Jariwala
,
V. K.
Sangwan
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
ACS Nano
8
(
2
),
1102
1120
(
2014
).
13.
S.
Heinze
,
J.
Tersoff
,
R.
Martel
,
V.
Derycke
,
J.
Appenzeller
, and
P.
Avouris
,
Phys. Rev. Lett.
89
(
10
),
106801
(
2002
).
14.
S.
Das
,
H. Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
(
1
),
100
105
(
2013
).
15.
M. M.
Perera
,
M. W.
Lin
,
H. J.
Chuang
,
B. P.
Chamlagain
,
C.
Wang
,
X.
Tan
,
M. M. C.
Cheng
,
D.
Tománek
, and
Z.
Zhou
,
ACS Nano
7
(
5
),
4449
4458
(
2013
).
16.
S.
Kim
,
A.
Konar
,
W. S.
Hwang
,
J. H.
Lee
,
J.
Lee
,
J.
Yang
,
C.
Jung
,
H.
Kim
,
J. B.
Yoo
,
J. Y.
Choi
, and
Y. W.
Jin
,
Nat. Commun.
3
,
1011
(
2012
).
17.
J. H.
Park
,
S.
Fathipour
,
I.
Kwak
,
K.
Sardashti
,
C. F.
Ahles
,
S. F.
Wolf
,
M.
Edmonds
,
S.
Vishwanath
,
H. G.
Xing
,
S. K.
Fullerton-Shirey
, and
A.
Seabaugh
,
ACS Nano
10
(
7
),
6888
6896
(
2016
).
18.
W.
Yang
,
Q. Q.
Sun
,
Y.
Geng
,
L.
Chen
,
P.
Zhou
,
S. J.
Ding
, and
D. W.
Zhang
,
Sci. Rep.
5
,
11921
(
2015
).
19.
P. M.
Solomon
,
IEEE Electron Device Lett.
31
(
6
),
618
620
(
2010
).
20.
Q.
Li
,
X.
Zhu
,
Y.
Yang
,
D. E.
Ioannou
,
H. D.
Xiong
,
D. W.
Kwon
,
J. S.
Suehle
, and
C. A.
Richter
,
Nanotechnology
20
(
41
),
415202
(
2009
).
21.
Q.
Li
,
X.
Zhu
,
D.
Ioannou
,
J.
Suehle
, and
C.
Richter
, in
Device Research Conference, 2009 (DRC 2009)
(IEEE,
2009
), pp.
113
114
).
22.
L.
Lattanzio
,
A.
Biswas
,
L.
De Michielis
, and
A. M.
Ionescu
,
Appl. Phys. Lett.
98
(
12
),
123504
(
2011
).
23.
P.
Matheu
, “
Investigations of tunneling for field effect transistors
,” Ph.D. thesis (
U.C. Berkeley
,
2012
), pp.
21
23
.
24.
K. L.
Ganapathi
,
N.
Bhat
, and
S.
Mohan
,
Semicond. Sci. Technol.
29
(
5
),
055007
(
2014
).
25.
K. L.
Ganapathi
,
S.
Bhattacharjee
,
S.
Mohan
, and
N.
Bhat
,
IEEE Electron Device Lett.
37
(
6
),
797
800
(
2016
).
26.
Y.
Wang
,
L.
Qi
,
L.
Shen
, and
Y.
Wu
,
J. Appl. Phys.
119
(
15
),
154301
(
2016
).
27.
S.
Bhattacharjee
,
K. L.
Ganapathi
,
H.
Chandrasekar
,
T.
Paul
,
S.
Mohan
,
A.
Ghosh
,
S.
Raghavan
, and
N.
Bhat
,
Adv. Electron. Mater.
3
(
1
),
1600358
(
2017
).
28.
S.
Bhattacharjee
,
K. L.
Ganapathi
,
D. N.
Nath
, and
N.
Bhat
,
IEEE Trans. Electron Devices
63
(
6
),
2556
2562
(
2016
).
29.
J.
Appenzeller
,
Y. M.
Lin
,
J.
Knoch
, and
P.
Avouris
,
Phys. Rev. Lett.
93
(
19
),
196805
(
2004
).
30.
G. P.
Lousberg
,
H. Y.
Yu
,
B.
Froment
,
E.
Augendre
,
A.
De Keersgieter
,
A.
Lauwers
,
M. F.
Li
,
P.
Absil
,
M.
Jurczak
, and
S.
Biesemans
,
IEEE Electron Device Lett.
28
(
2
),
123
125
(
2007
).
31.
G.
Larrieu
,
E.
Dubois
,
D.
Yarekha
,
N.
Breil
,
N.
Reckinger
,
X.
Tang
,
J.
Ratajczak
, and
A.
Laszcz
,
Mater. Sci. Eng., B
154–155
,
159
162
(
2008
).
32.
L.
Yan
,
Y.
Jing
,
W.
Hongjuan
, and
H.
Genquan
,
J. Semicond.
35
(
2
),
024001
(
2014
).
33.
S.
Mookerjea
,
D.
Mohata
,
T.
Mayer
,
V.
Narayanan
, and
S.
Datta
,
IEEE Electron Device Lett.
31
(
6
),
564
566
(
2010
).

Supplementary Material

You do not currently have access to this content.