Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

1.
S.
Iijima
, “
Helical microtubules of graphitic carbon
,”
Nature
354
,
56
58
(
1991
).
2.
M.-F.
Yu
,
B. S.
Files
,
S.
Arepalli
, and
R. S.
Ruoff
, “
Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties
,”
Phys. Rev. Lett.
84
,
5552
(
2000
).
3.
S.
Berber
,
Y.-K.
Kwon
, and
D.
Tománek
, “
Unusually high thermal conductivity of carbon nanotubes
,”
Phys. Rev. Lett.
84
,
4613
(
2000
).
4.
T. W.
Ebbesen
,
H. J.
Lezec
,
H.
Hiura
,
J. W.
Bennett
,
H. F.
Ghaemi
, and
T.
Thio
, “
Electrical conductivity of individual carbon nanotubes
,”
Nature
382
,
54
56
(
1996
).
5.
K.
Jensen
,
J.
Weldon
,
H.
Garcia
, and
A.
Zettl
, “
Nanotube radio
,”
Nano Lett.
7
,
3508
3511
(
2007
).
6.
P. J.
Burke
,
S.
Li
, and
Z.
Yu
, “
Quantitative theory of nanowire and nanotube antenna performance
,”
IEEE Trans. Nanotechnol.
5
,
314
334
(
2006
).
7.
J. J.
Plombon
,
K. P.
O'Brien
,
F.
Gstrein
,
V. M.
Dubin
, and
Y.
Jiao
, “
High-frequency electrical properties of individual and bundled carbon nanotubes
,”
Appl. Phys. Lett.
90
,
063106
(
2007
).
8.
S. D.
Keller
,
A. I.
Zaghloul
,
V.
Shanov
,
M. J.
Schulz
,
D. B.
Mast
, and
N. T.
Alvarez
, “
Radiation performance of polarization selective carbon nanotube sheet patch antennas
,”
IEEE Trans. Antennas Propag.
62
,
48
55
(
2014
).
9.
I.
Puchades
,
J. E.
Rossi
,
C. D.
Cress
,
E.
Naglich
, and
B. J.
Landi
, “
Carbon nanotube thin-film antennas
,”
ACS Appl. Mater. Interfaces
8
,
20986
20992
(
2016
).
10.
Y.
Bayram
,
Y.
Zhou
,
B. S.
Shim
,
S.
Xu
,
J.
Zhu
,
N. A.
Kotov
, and
J. L.
Volakis
, “
E-textile conductors and polymer composites for conformal lightweight antennas
,”
IEEE Trans. Antennas Propag.
58
,
2732
2736
(
2010
).
11.
A.
Mehdipour
,
I. D.
Rosca
,
A.-R.
Sebak
,
C. W.
Trueman
, and
S. V.
Hoa
, “
Carbon nanotube composites for wideband millimeter-wave antenna applications
,”
IEEE Trans. Antennas Propag.
59
,
3572
3578
(
2011
).
12.
T. A.
Elwi
,
H. M.
Al-Rizzo
,
D. G.
Rucker
,
E.
Dervishi
,
Z.
Li
, and
A. S.
Birias
, “
Multi-walled carbon nanotube-based RF antennas
,”
Nanotechnology
21
,
045301
(
2010
).
13.
Y.
Huang
,
W.-Y.
Yin
, and
Q. H.
Liu
, “
Performance prediction of carbon nanotube bundle dipole antennas
,”
IEEE Trans. Nanotechnol.
7
,
331
337
(
2008
).
14.
S.
Choi
and
K.
Sarabandi
, “
Performance assessment of bundled carbon nanotube for antenna applications at terahertz frequencies and higher
,”
IEEE Trans. Antennas Propag.
59
,
802
809
(
2011
).
15.
G. W.
Hanson
, “
Fundamental transmitting properties of carbon nanotube antennas
,”
IEEE Trans. Antennas Propag.
53
,
3426
3435
(
2005
).
16.
S. D.
Keller
,
A. I.
Zaghloul
,
V.
Shanov
,
M. J.
Schulz
,
D. B.
Mast
, and
N. T.
Alvarez
, “
Electromagnetic simulation and measurement of carbon nanotube thread dipole antennas
,”
IEEE Trans. Nanotechnol.
13
,
394
403
(
2014
).
17.
C. L.
Holloway
,
H. A.
Shah
,
R. J.
Pirkl
,
W. F.
Young
,
D. A.
Hill
, and
J.
Ladbury
, “
Reverberation chamber techniques for determining the radiation and total efficiency of antennas
,”
IEEE Trans. Antennas Propag.
60
,
1758
1770
(
2012
).
18.
N.
Behabtu
,
C. C.
Young
,
D. E.
Tsentalovich
,
O.
Kleinerman
,
X.
Wang
,
A. W. K.
Ma
,
E. A.
Bengio
,
R. F.
ter Waarbeek
,
J. J.
de Jong
,
R. E.
Hoogerwerf
 et al., “
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
,”
Science
339
,
182
186
(
2013
).
19.
Y.
Wang
,
H.
Shan
,
R. H.
Hauge
,
M.
Pasquali
, and
R. E.
Smalley
, “
A highly selective, one-pot purification method for single-walled carbon nanotubes
,”
J. Phys. Chem. B
111
,
1249
1252
(
2007
).
20.
D. E.
Tsentalovich
,
A. W. K.
Ma
,
J. A.
Lee
,
N.
Behabtu
,
E. A.
Bengio
,
A.
Choi
,
J.
Hao
,
Y.
Luo
,
R. J.
Headrick
,
M. J.
Green
 et al., “
Relationship of extensional viscosity and liquid crystalline transition to length distribution in carbon nanotube solutions
,”
Macromolecules
49
,
681
689
(
2016
).
21.
BSA Troop, 228, Ropemaking.
22.
D.
Senic
,
K. A.
Remley
,
C.-H. J.
Wang
,
D. F.
Williams
,
C. L.
Holloway
,
D. C.
Ribeiro
, and
A. T.
Kirk
, “
Estimating and reducing uncertainty in reverberation-chamber characterization at millimeter-wave frequencies
,”
IEEE Trans. Antennas Propag.
64
,
3130
3140
(
2016
).
23.
A.
Lekawa-Raus
,
T.
Gizewski
,
J.
Patmore
,
L.
Kurzepa
, and
K. K.
Koziol
, “
Electrical transport in carbon nanotube fibres
,”
Scr. Mater.
131
,
112
118
(
2016
).
24.
H.
Visser
,
Antenna Theory and Applications
(
Wiley
,
2012
).

Supplementary Material

You do not currently have access to this content.