Nano-patterning on the order of sub-10 nm is integral to achieve high-density nano-scale devices for various data storage and data processing applications. However, the additional requirement of planarization and unwanted side-effects of physical or chemical etching have so far limited the patterning of sub-10 nm devices. In this work, we have demonstrated the creation of an array of ∼10 nm ferromagnetic islands through selective phase transformation of paramagnetic multilayers by low-energy proton irradiation. Paramagnetic Co3O4/Pd multilayers masked with patterned PMMA (polymethyl methacrylate) were reduced to ferromagnetic Co/Pd by proton irradiation. A clear contrast of the nano-islands was observed using magnetic force microscopy, establishing the formation of ferromagnetic nano-islands with perpendicular magnetic anisotropy. This process provides a way to circumvent the side-effects associated with both conventional nano-scale pattering and high-energy ion irradiation. Therefore, phase transformation by low energy proton irradiation can be used for patterning sub-10 nm nano-islands, not only for magnetic data storage but also for patterning various opto-electronic and spintronic devices.

1.
R. E.
Fontana
,
S. R.
Hetzler
, and
G.
Decad
,
IEEE Trans. Magn.
48
,
1692
(
2012
).
2.
C.
Chappert
,
H.
Bernas
,
J.
Ferré
,
V.
Kottler
,
J.-P.
Jamet
,
Y.
Chen
,
E.
Cambril
,
T.
Devolder
,
F.
Rousseaux
,
V.
Mathet
, and
H.
Launois
,
Science
280
,
1919
(
1998
).
3.
D. M.
Toyli
,
C. D.
Weis
,
G. D.
Fuchs
,
T.
Schenkel
, and
D. D.
Awschalom
,
Nano Lett.
10
,
3168
(
2010
).
4.
X.
Jiang
,
L.
Thomas
,
R.
Moriya
, and
S. S.
Parkin
,
Nano Lett.
11
,
96
(
2011
).
5.
I. M.
Miron
,
T.
Moore
,
H.
Szambolics
,
L. D.
Buda-Prejbeanu
,
S.
Auffret
,
B.
Rodmacq
,
S.
Pizzini
,
J.
Vogel
,
M.
Bonfim
,
A.
Schuhl
, and
G.
Gaudin
,
Nat. Mater.
10
,
419
(
2011
).
6.
X.
Yang
,
S.
Xiao
,
W.
Wu
,
Y.
Xu
,
K.
Mountfield
,
R.
Rottmayer
,
K.
Lee
,
D.
Kuo
, and
D.
Weller
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
25
,
2202
(
2007
).
7.
B. D.
Terris
,
J. Magn. Magn. Mater.
321
,
512
(
2009
).
8.
M. T.
Moneck
and
J.-G.
Zhu
,
Proc. SPIE
7823
,
U1
(
2010
).
9.
T. R.
Albrecht
,
H.
Arora
,
V.
Ayanoor-Vitikkate
,
J.-M.
Beaujour
,
D.
Bedau
,
D.
Berman
,
A. L.
Bogdanov
,
Y.-A.
Chapuis
,
J.
Cushen
,
E. E.
Dobisz
,
G.
Doerk
,
G.
He
,
M.
Grobis
,
B.
Gurney
,
W.
Hanson
,
O.
Hellwig
,
T.
Hirano
,
P.-O.
Jubert
,
D.
Kercher
,
J.
Lille
,
L.
Zuwei
,
C. M.
Mate
,
Y.
Obukhov
,
K. C.
Patel
,
K.
Rubin
,
R.
Ruiz
,
M.
Schabes
,
W.
Lei
,
D.
Weller
,
W.
Tsai-Wei
, and
Y.
En
,
IEEE Trans. Magn.
51
,
1
(
2015
).
10.
S. Y.
Chou
,
P. R.
Krauss
,
W.
Zhang
,
L.
Guo
, and
L.
Zhuang
,
J. Vac. Sci. Technol. B
15
,
2897
(
1997
).
11.
J. K.
Yang
,
Y.
Chen
,
T.
Huang
,
H.
Duan
,
N.
Thiyagarajah
,
H. K.
Hui
,
S. H.
Leong
, and
V.
Ng
,
Nanotechnology
22
,
385301
(
2011
).
12.
G.
Li
,
Q.
Dong
,
J.
Xin
,
C. W.
Leung
,
P. T.
Lai
,
W.-Y.
Wong
, and
P. W. T.
Pong
,
Microelectron. Eng.
110
,
192
(
2013
).
13.
X. M.
Yang
,
S.
Xiao
,
Y.
Hsu
,
M.
Feldbaum
,
K.
Lee
, and
D.
Kuo
,
J. Nanomater.
2013
,
1
(
2013
).
14.
Y.
Zhang
,
C.
Hui
,
R.
Sun
,
K.
Li
,
K.
He
,
X.
Ma
, and
F.
Liu
,
Nanotechnology
25
,
135301
(
2014
).
15.
K.
Sato
,
A.
Ajan
,
N.
Aoyama
,
T.
Tanaka
,
Y.
Miyaguchi
,
K.
Tsumagari
,
T.
Morita
,
T.
Nishihashi
,
A.
Tanaka
, and
T.
Uzumaki
,
J. Appl. Phys.
107
,
123910
(
2010
).
16.
D. G.
Merkel
,
L.
Bottyán
,
F.
Tanczikó
,
Z.
Zolnai
,
N.
Nagy
,
G.
Vértesy
,
J.
Waizinger
, and
L.
Bommer
,
J. Appl. Phys.
109
,
124302
(
2011
).
17.
A.
Varea
,
E.
Menéndez
,
J.
Montserrat
,
E.
Lora-Tamayo
,
A.
Weber
,
L. J.
Heyderman
,
S. C.
Deevi
,
K. V.
Rao
,
S.
Suriñach
,
M. D.
Baró
,
K. S.
Buchanan
,
J.
Nogués
, and
J.
Sort
,
J. Appl. Phys.
109
,
093918
(
2011
).
18.
T.
Hasegawa
,
T.
Yamazaki
,
Y.
Kondo
, and
S.
Ishio
,
J. Appl. Phys.
115
,
17B721
(
2014
).
19.
S.
Kundu
,
N.
Gaur
,
S. N.
Piramanayagam
,
S. L.
Maurer
,
H.
Yang
, and
C. S.
Bhatia
,
IEEE Trans. Magn.
50
,
41
(
2014
).
20.
J.
Fassbender
,
D.
Ravelosona
, and
Y.
Samson
,
J. Phys. D: Appl. Phys.
37
,
R179
(
2004
).
21.
V.
Parekh
,
D.
Smith
,
E.
Chunsheng
,
J.
Rantschler
,
S.
Khizroev
, and
D.
Litvinov
,
J. Appl. Phys.
101
,
083904
(
2007
).
22.
J.
Fassbender
,
Nat. Nanotechnol.
7
,
554
(
2012
).
23.
S.
Kim
,
S.
Lee
,
J.
Ko
,
J.
Son
,
M.
Kim
,
S.
Kang
, and
J.
Hong
,
Nat. Nanotechnol.
7
,
567
(
2012
).
24.
T.
Kato
,
S.
Iwata
,
Y.
Yamauchi
,
S.
Tsunashima
,
K.
Matsumoto
,
T.
Morikawa
, and
K.
Ozaki
,
J. Appl. Phys.
105
,
07C117
(
2009
).
25.
U.
Hartmann
,
Annu. Rev. Mater. Sci.
29
,
53
(
1999
).
26.
T.
Aoyama
,
S.
Okawa
,
K.
Hattori
,
H.
Hatate
,
Y.
Wada
,
K.
Uchiyama
,
T.
Kagotani
,
H.
Nishio
, and
I.
Sato
,
J. Magn. Magn. Mater.
235
,
174
(
2001
).
27.
E.
Suharyadi
,
T.
Kato
,
S.
Tsunashima
, and
S.
Iwata
,
IEEE Trans. Magn.
42
,
2972
(
2006
).
28.
S.
Kim
,
S.
Lee
, and
J.
Hong
,
ACS Nano
8
,
4698
(
2014
).
29.
C. H. M.
Broeders
and
A. Y.
Konobeyev
,
J. Nucl. Mater.
328
,
197
(
2004
).
30.
P.
Bruno
and
J.-P.
Renard
,
Appl. Phys. A: Mater. Sci. Process.
49
,
499
(
1989
).
31.
B. N.
Engel
,
C. D.
England
,
R. A.
Van Leeuwen
,
M. H.
Wiedmann
, and
C. M.
Falco
,
Phys. Rev. Lett.
67
,
1910
(
1991
).
32.
K.
Kyuno
,
J.-G.
Ha
, and
R.
Yamamoto
,
Phys. Rev. B
54
,
1092
(
1996
).

Supplementary Material

You do not currently have access to this content.