Sandwich structures of aluminum oxide, nickel, and aluminum oxide films are fabricated by atomic layer deposition to study thermal interfacial resistance between a metal and a dielectric material and the interfacial coupling effect across a thin metal layer. Thermal resistance of a thin nickel layer as well as two interfaces is measured using the 3ω method. Experimental results show interfacial resistance between nickel and aluminum oxide to be 6.8×103mm2K/W at 300 K, with a weak dependence on the metal thickness and temperature. A two-temperature model and a detailed diffuse mismatch model have been used to estimate interfacial resistance theoretically, and the results agree reasonably well with experiments. Estimations from the two temperature model indicate that in the overall thermal interfacial resistance, the phonon-phonon interfacial resistance dominates over the resistance due to the electron-phonon coupling effect and inside the metal layer. Also, the phonon-phonon interfacial resistance does not vary as the metal layer thickness decreases below the electron-phonon cooling length, indicating that the two adjacent interfaces are not thermally coupled.

1.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
, “
Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique
,”
J. Heat Transfer
127
,
315
(
2005
).
2.
E.
Dechaumphai
,
D.
Lu
,
J. J.
Kan
,
J.
Moon
,
E. E.
Fullerton
,
Z.
Liu
, and
R.
Chen
, “
Ultralow thermal conductivity of multilayers with highly dissimilar Debye temperatures
,”
Nano Lett.
14
,
2448
2455
(
2014
).
3.
M. N.
Luckyanova
,
J.
Garg
,
K.
Esfarjani
,
A.
Jandl
,
M. T.
Bulsara
,
A. J.
Schmidt
,
A. J.
Minnich
,
S.
Chen
,
M. S.
Dresselhaus
,
Z.
Ren
,
E. A.
Fitzgerald
, and
G.
Chen
, “
Coherent phonon heat conduction in superlattices
,”
Science
338
,
936
939
(
2012
).
4.
J.
Ravichandran
,
A. K.
Yadav
,
R.
Cheaito
,
P. B.
Rossen
,
A.
Soukiassian
,
S. J.
Suresha
,
J. C.
Duda
,
B. M.
Foley
,
C.-H.
Lee
,
Y.
Zhu
,
A. W.
Lichtenberger
,
J. E.
Moore
,
D. A.
Muller
,
D. G.
Schlom
,
P. E.
Hopkins
,
A.
Majumdar
,
R.
Ramesh
, and
M. A.
Zurbuchen
, “
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
,”
Nat. Mater.
13
,
168
172
(
2014
).
5.
Y.
Wang
,
H.
Huang
, and
X.
Ruan
, “
Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers
,”
Phys. Rev. B
90
,
165406
(
2014
).
6.
J.
Shi
,
Y.
Dong
,
T.
Fisher
, and
X.
Ruan
, “
Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions
,”
J. Appl. Phys.
118
,
044302
(
2015
).
7.
Y.
Wang
,
X.
Ruan
, and
A. K.
Roy
, “
Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces
,”
Phys. Rev. B
85
,
205311
(
2012
).
8.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
, “
Nanoscale thermal transport
,”
J. Appl. Phys.
93
,
793
(
2003
).
9.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
,
802
(
1990
).
10.
D. G.
Cahill
, “
Thermal conductivity of thin films: Measurements and understanding
,”
J. Vac. Sci. Technol. A: Vac., Surf., Films
7
,
1259
(
1989
).
11.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
, “
Data reduction in 3ω method for thin-film thermal conductivity determination
,”
Rev. Sci. Instrum.
72
,
2139
(
2001
).
12.
Y. K.
Koh
,
S. L.
Singer
,
W.
Kim
,
J. M. O.
Zide
,
H.
Lu
,
D. G.
Cahill
,
A.
Majumdar
, and
A. C.
Gossard
, “
Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors
,”
J. Appl. Phys.
105
,
054303
(
2009
).
13.
A.
Majumdar
and
P.
Reddy
, “
Role of electronphonon coupling in thermal conductance of metal nonmetal interfaces
,”
Appl. Phys. Lett.
84
,
4768
(
2004
).
14.
D. M.
Duffy
and
A. M.
Rutherford
, “
Including the effects of electronic stopping and electronion interactions in radiation damage simulations
,”
J. Phys.: Condens. Matter
19
,
16207
(
2007
).
15.
Z.
Lin
,
L.
Zhigilei
, and
V.
Celli
, “
Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium
,”
Phys. Rev. B
77
,
075133
(
2008
).
16.
L.
Koči
,
E. M.
Bringa
,
D. S.
Ivanov
,
J.
Hawreliak
,
J.
McNaney
,
A.
Higginbotham
,
L. V.
Zhigilei
,
A. B.
Belonoshko
,
B. A.
Remington
, and
R.
Ahuja
, “
Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model
,”
Phys. Rev. B
74
,
012101
(
2006
).
17.
R. E.
Jones
,
J. A.
Templeton
,
G. J.
Wagner
,
D.
Olmsted
, and
N. A.
Modine
, “
Electron transport enhanced molecular dynamics for metals and semi-metals
,”
Int. J. Numer. Methods Eng.
83
,
940
967
(
2010
).
18.
Z.
Lu
,
Y.
Wang
, and
X.
Ruan
, “
Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit
,”
Phys. Rev. B - Condens. Matter Mater. Phys.
93
,
064302
(
2016
).
19.
Z.
Li
,
S.
Tan
,
E.
Bozorg-Grayeli
,
T.
Kodama
,
M.
Asheghi
,
G.
Delgado
,
M.
Panzer
,
A.
Pokrovsky
,
D.
Wack
, and
K. E.
Goodson
, “
Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm
,”
Nano Lett.
12
,
3121
3126
(
2012
).
20.
W. A.
Little
, “
The transport of heat between dissimilar solids at low temperatures
,”
Can. J. Phys.
37
,
334
349
(
1959
).
21.
E.
Swartz
and
R.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
,
605
668
(
1989
).
22.
R. S.
Prasher
and
P. E.
Phelan
, “
A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance
,”
J. Heat Transfer
123
,
105
(
2001
).
23.
C. L.
Phillips
and
P. S.
Crozier
, “
An energy-conserving two-temperature model of radiation damage in single-component and binary Lennard-Jones crystals
,”
J. Chem. Phys.
131
,
074701
(
2009
).
24.
R. E.
Jones
,
J. C.
Duda
,
X. W.
Zhou
,
C. J.
Kimmer
, and
P. E.
Hopkins
, “
Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics
,”
Appl. Phys. Lett.
102
,
183119
(
2013
).
25.
P.
Heino
and
E.
Ristolainen
, “
Thermal conduction at the nanoscale in some metals by MD
,”
Microelectron. J.
34
,
773
777
(
2003
).
26.
H.
Fan
,
B.
Zou
,
Y.
Liu
, and
S.
Xie
, “
Size effect on the electron-phonon coupling in CuO nanocrystals
,”
Nanotechnology
17
,
1099
1103
(
2006
).
27.
J. A.
Sobota
,
S.-L.
Yang
,
D.
Leuenberger
,
A. F.
Kemper
,
J. G.
Analytis
,
I. R.
Fisher
,
P. S.
Kirchmann
,
T. P.
Devereaux
, and
Z.-X.
Shen
, “
Distinguishing bulk and surface electron-phonon coupling in the topological insulator Bi2Se3 using time-resolved photoemission spectroscopy
,”
Phys. Rev. Lett.
113
,
157401
(
2014
).
28.
M.
Maier
,
M.
Schätzel
,
G.
Wrigge
,
M.
Astruc Hoffmann
,
P.
Didier
, and
B. V.
Issendorff
, “
Bulk-like electron-phonon coupling in small free sodium clusters
,”
Int. J. Mass Spectrom.
252
,
157
165
(
2006
).
29.
Y.
Shiping
and
J.
Peixue
, “
Thermal conductivity of nanoscale thin nickel films
,”
Prog. Nat. Sci.
15
,
922
929
(
2005
).
You do not currently have access to this content.