We show that fabrication imperfections in silicon nitride photonic crystal waveguides can be used as a resource to efficiently confine light in the Anderson-localised regime and add functionalities to photonic devices. Our results prove that disorder-induced localisation of light can be utilised to realise an alternative class of high-quality optical sensors operating at room temperature. We measure wavelength shifts of optical resonances as large as 15.2 nm, more than 100 times the spectral linewidth of 0.15 nm, for a refractive index change of about 0.38. By studying the temperature dependence of the optical properties of the system, we report wavelength shifts of up to about 2 nm and increases of more than a factor 2 in the quality factor of the cavity resonances, when going from room to cryogenic temperatures. Such a device can allow simultaneous sensing of both local contaminants and temperature variations, monitored by tens of optical resonances spontaneously appearing along a single photonic crystal waveguide. Our findings demonstrate the potential of Anderson-localised light in photonic crystals for scalable and efficient optical sensors operating in the visible and near-infrared range of wavelengths.

1.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
2011
).
2.
H.
Sekoguchi
,
Y.
Takahashi
,
T.
Asano
, and
S.
Noda
,
Opt. Express
22
,
916
(
2014
).
3.
M.
Pelton
,
Nat. Photonics
9
,
427
(
2015
).
4.
A.
Kress
,
F.
Hofbauer
,
N.
Reinelt
,
M.
Kaniber
,
H. J.
Krenner
,
R.
Meyer
,
G.
Böhm
, and
J. J.
Finley
,
Phys. Rev. B
71
,
241304(R)
(
2005
).
5.
K.
Hennessy
,
A.
Badolato
,
M.
Winger
,
D.
Gerace
,
M.
Atatüre
,
S.
Gulde
,
S.
Fält
,
E. L.
Hu
, and
A.
Imamoğlu
,
Nature
445
,
896
(
2007
).
6.
J.
Hodgkinson
and
R. P.
Tatam
,
Meas. Sci. Technol.
24
,
012004
(
2013
).
7.
Y.
Zhanga
,
Y.
Zhaoa
, and
R.-Q.
Lv
,
Sens. Actuators, A
233
,
374
(
2015
).
8.
M.
Li
,
S. K.
Cushing
, and
N.
Wu
,
Analyst
140
,
386
(
2015
).
9.
Y.
Akahane
,
T.
Asano
,
B.-S.
Song
, and
S.
Noda
,
Nature
425
,
944
(
2003
).
10.
T.
Crane
,
O. J.
Trojak
,
J. P.
Vasco
,
S.
Hughes
, and
L.
Sapienza
,
ACS Photonics
4
,
2274
(
2017
).
11.
J.
Topolancik
,
B.
Ilic
, and
F.
Vollmer
,
Phys. Rev. Lett.
99
,
253901
(
2007
).
12.
V.
Savona
,
Phys. Rev. B
83
,
085301
(
2011
).
13.
J.
Kistner
,
X.
Chen
,
Y.
Weng
,
H. P.
Strunk
,
M. B.
Schubert
, and
J. H.
Werner
,
J. Appl. Phys.
110
,
023520
(
2011
).
14.
M.
Makarova
,
J.
Vučković
,
H.
Sanda
, and
Y.
Nishi
,
Appl. Phys. Lett.
89
,
221101
(
2006
).
15.
M. M.
Murshidy
,
A. M.
Adawi
,
P. W.
Fry
,
D. M.
Whittaker
, and
D. G.
Lidzey
,
J. Opt. Soc. Am., B
27
,
215
(
2010
).
16.
M.
Barth
,
N.
Nüsse
,
J.
Stingl
,
B.
Löchel
, and
O.
Benson
,
Appl. Phys. Lett.
93
,
021112
(
2008
).
17.
S. H.
Mirsadeghi
,
E.
Schelew
, and
J. F.
Young
,
Appl. Phys. Lett.
102
,
131115
(
2013
).
18.
E.
Chow
,
A.
Grot
,
L. W.
Mirkarimi
,
M.
Sigalas
, and
G.
Girolami
,
Opt. Lett.
29
,
1093
(
2004
).
19.
I.
Aharonovich
,
A. D.
Greentree
, and
S.
Prawer
,
Nat. Photonics
5
,
397
(
2011
).
20.
F.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
,
Nat. Photonics
8
,
899
(
2014
).
21.
Y.
Gong
,
M.
Makarova
,
S.
Yerci
,
R.
Li
,
M. J.
Stevens
,
B.
Baek
,
S.
Woo Nam
,
R. H.
Hadfield
,
S. N.
Dorenbos
,
V.
Zwiller
 et al,
Opt. Express
18
,
2601
(
2010
).
22.
S. H.
Choi
and
Y. L.
Kim
,
Appl. Phys. Lett.
100
,
041101
(
2012
).
23.
L.
Bocquet
and
E.
Charlaix
,
Chem. Soc. Rev.
39
,
1073
(
2010
).
24.
Y.
Ooka
,
T.
Tetsumoto
,
A.
Fushimi
,
W.
Yoshiki
, and
T.
Tanabe
,
Sci. Rep.
5
,
11312
(
2015
).
25.
T.
Senn
,
J.
Bischoff
,
N.
Nüsse
,
M.
Schoengen
, and
B.
Löchel
,
Photonics Nanostruct.—Fundam. Appl.
9
,
248
(
2011
).
You do not currently have access to this content.