Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical structure of the aortic wall with different extracellular matrices appears unlikely to be ferroelectric. The reason is that a prerequisite for ferroelectricity, which is the spontaneous switching of the polarization, is a polar crystal structure of the material. Although the PFM measurements were performed locally, the phase-voltage hysteresis loops could be reproduced at different positions on the tissue, suggesting that the whole aorta is ferroelectric. To corroborate this hypothesis, we analyzed entire pieces of porcine aorta globally, both with electrical and electromechanical measurements. We show that there is no hysteresis in the electric displacement as well as in the longitudinal strain as a function of applied electric field and that the strain depends on the electric field squared. By using the experimentally determined quasi-static permittivity and Young's modulus of the fixated aorta, we show that the strain can quantitatively be explained by Maxwell stress and electrostriction, meaning that the aortic wall is neither piezoelectric nor ferroelectric, but behaves as a regular dielectric material.

1.
E.
Fukada
and
I.
Yasuda
, “
On the piezoelectric effect of bone
,”
J. Phys. Soc. Jpn.
12
(
10
),
1158
1162
(
1957
).
2.
M.-J.
Majid
and
Y.
Min-Feng
, “
Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity
,”
Nanotechnology
20
(
8
),
085706
(
2009
).
3.
C.
Halperin
,
S.
Mutchnik
,
A.
Agronin
,
M.
Molotskii
,
P.
Urenski
,
M.
Salai
, and
G.
Rosenman
, “
Piezoelectric effect in human bones studied in nanometer scale
,”
Nano Lett.
4
(
7
),
1253
1256
(
2004
).
4.
D.
Haverty
,
S. A. M.
Tofail
,
K. T.
Stanton
, and
J. B.
McMonagle
, “
Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis
,”
Phys. Rev. B
71
(
9
),
094103
(
2005
).
5.
A. A.
Gandhi
,
M.
Wojtas
,
S. B.
Lang
,
A. L.
Kholkin
, and
S. A. M.
Tofail
, “
Piezoelectricity in poled hydroxyapatite ceramics
,”
J. Am. Ceram. Soc.
97
(
9
),
2867
2872
(
2014
).
6.
S. B.
Lang
,
S. A. M.
Tofail
,
A. L.
Kholkin
,
M.
Wojtaś
,
M.
Gregor
,
A. A.
Gandhi
,
Y.
Wang
,
S.
Bauer
,
M.
Krause
, and
A.
Plecenik
, “
Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon
,”
Sci. Rep.
3
,
2215
(
2013
).
7.
M. D.
Shoulders
and
R. T.
Raines
, “
Collagen structure and stability
,”
Annu. Rev. Biochem.
78
(
1
),
929
958
(
2009
).
8.
E.
Fukada
, “
Mechanical deformation and electrical polarization in biological substances
,”
Biorheology
5
(
3
),
199
208
(
1968
).
9.
A. R.
Liboff
and
M.
Furst
, “
Pyroelectric effect in collagenous structures
,”
Ann. N. Y. Acad. Sci.
238
(
1
),
26
35
(
1974
).
10.
A. A.
Gundjian
and
H. L.
Chen
, “
Standardization and interpretation of the electromechanical properties of bone
,”
IEEE Trans. Biomed. Eng.
21
(
3
),
177
182
(
1974
).
11.
C. A. L.
Bassett
, “
Biologic significance of piezoelectricity
,”
Calcif. Tissue Res.
1
(
1
),
252
272
(
1967
).
12.
J.
Wolff
, “
Ueber die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum
,”
Arch. Pathol. Anat. Physiol. Klin. Med.
50
(
3
),
389
450
(
1870
).
13.
R.
Brand
and
L.
Claes
, “
The law of bone remodelling
,”
J. Biomech.
22
(
2
),
185
187
(
1989
).
14.
C. A. L.
Bassett
,
R. J.
Pawluk
, and
R. O.
Becker
, “
Effects of electric currents on bone in vivo
,”
Nature
204
(
4959
),
652
654
(
1964
).
15.
T.
Li
and
K.
Zeng
, “
Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques
,”
Acta Mater.
59
(
9
),
3667
3679
(
2011
).
16.
E.
Fukada
and
K.
Hara
, “
Piezoelectric effect in blood vessel walls
,”
J. Phys. Soc. Jpn.
26
(
3
),
777
780
(
1969
).
17.
A. J. P.
Martin
, “
Tribo-electricity in wool and hair
,”
Proc. Phys. Soc.
53
(
2
),
186
(
1941
).
18.
T.
Ikeda
,
Fundamentals of Piezoelectricity
(
Oxford University Press
,
1990
).
19.
D.
Damjanovic
, “
Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics
,”
Rep. Prog. Phys.
61
(
11
),
1267
1324
(
1998
).
20.
B. J.
Rodriguez
,
S. V.
Kalinin
,
J.
Shin
,
S.
Jesse
,
V.
Grichko
,
T.
Thundat
,
A. P.
Baddorf
, and
A.
Gruverman
, “
Electromechanical imaging of biomaterials by scanning probe microscopy
,”
J. Struct. Biol.
153
(
2
),
151
159
(
2006
).
21.
Y.
Liu
,
Y.
Zhang
,
M.-J.
Chow
,
Q. N.
Chen
, and
J.
Li
, “
Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy
,”
Phys. Rev. Lett.
108
(
7
),
078103
(
2012
).
22.
Y.
Liu
,
H.-L.
Cai
,
M.
Zelisko
,
Y.
Wang
,
J.
Sun
,
F.
Yan
,
F.
Ma
,
P.
Wang
,
Q. N.
Chen
,
H.
Zheng
,
X.
Meng
,
P.
Sharma
,
Y.
Zhang
, and
J.
Li
, “
Ferroelectric switching of elastin
,”
Proc. Natl. Acad. Sci. U.S.A.
111
(
27
),
E2780
E2786
(
2014
).
23.
Y.
Liu
,
Y.
Wang
,
M.-J.
Chow
,
N. Q.
Chen
,
F.
Ma
,
Y.
Zhang
, and
J.
Li
, “
Glucose suppresses biological ferroelectricity in aortic elastin
,”
Phys. Rev. Lett.
110
(
16
),
168101
(
2013
).
24.
X. Y.
Liu
,
F.
Yan
,
L. L.
Niu
,
Q. N.
Chen
,
H. R.
Zheng
, and
J. Y.
Li
, “
Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta
,”
Nanoscale
8
(
13
),
6975
6980
(
2016
).
25.
E.
Soergel
, “
Piezoresponse force microscopy (PFM)
,”
J. Phys. D: Appl. Phys.
44
(
46
),
464003
(
2011
).
26.
A.
Gruverman
and
S. V.
Kalinin
, “
Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics
,”
J. Mater. Sci.
41
(
1
),
107
116
(
2006
).
27.
M.
Li
,
H. J.
Wondergem
,
M.-J.
Spijkman
,
K.
Asadi
,
I.
Katsouras
,
P. W. M.
Blom
, and
D. M.
de Leeuw
, “
Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films
,”
Nat. Mater.
12
(
5
),
433
438
(
2013
).
28.
P.
Boldrini
, “
Ferroelectricity in the arterial wall: A new physical component of atherosclerosis
,”
J. Theor. Biol.
87
(
2
),
263
273
(
1980
).
29.
W. F.
Daamen
,
J. H.
Veerkamp
,
J. C.
van Hest
, and
T. H.
van Kuppevelt
, “
Elastin as a biomaterial for tissue engineering
,”
Biomaterials
28
(
30
),
4378
4398
(
2007
).
30.
A.
Heredia
,
V.
Meunier
,
I. K.
Bdikin
,
J.
Gracio
,
N.
Balke
,
S.
Jesse
,
A.
Tselev
,
P. K.
Agarwal
,
B. G.
Sumpter
,
S. V.
Kalinin
, and
A. L.
Kholkin
, “
Nanoscale ferroelectricity in crystalline γ-Glycine
,”
Adv. Funct. Mater.
22
(
14
),
2996
3003
(
2012
).
31.
E.
Seyedhosseini
,
I.
Bdikin
,
M.
Ivanov
,
D.
Vasileva
,
A.
Kudryavtsev
,
B. J.
Rodriguez
, and
A. L.
Kholkin
, “
Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine
,”
J. Appl. Phys.
118
(
7
),
072008
(
2015
).
32.
E.
Seyedhosseini
,
K.
Romanyuk
,
D.
Vasileva
,
S.
Vasilev
,
A.
Nuraeva
,
P.
Zelenovskiy
,
M.
Ivanov
,
A. N.
Morozovska
,
V. Y.
Shur
,
H.
Lu
,
A.
Gruverman
, and
A. L.
Kholkin
, “
Self-assembly of organic ferroelectrics by evaporative dewetting: A case of β-Glycine
,”
ACS Appl. Mater. Interfaces
9
(
23
),
20029
20037
(
2017
).
33.
J. F.
Scott
, “
Prospects for Ferroelectrics: 2012–2022
,”
ISRN Mater. Sci.
2013
,
24
.
34.
A.
Tsamis
,
J. T.
Krawiec
, and
D. A.
Vorp
, “
Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review
,”
J. R. Soc. Interface
10
(
83
),
20121005
(
2013
).
35.
Z.
Tonar
,
T.
Kubíková
,
C.
Prior
,
E.
Demjén
,
V.
Liška
,
M.
Králíčková
, and
K.
Witter
, “
Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta
,”
Ann. Anat.
201
,
79
90
(
2015
).
36.
P. W.
Alford
,
J. D.
Humphrey
, and
L. A.
Taber
, “
Growth and remodeling in a thick-walled artery model: Effects of spatial variations in wall constituents
,”
Biomech. Model. Mechanobiol.
7
(
4
),
245
262
(
2008
).
37.
A. M.
Robertson
and
P. N.
Watton
, “
Mechanobiology of the arterial wall
,” in
Transport in Biological Media
(
Elsevier
,
2013
), pp
275
347
.
38.
I.
Katsouras
,
K.
Asadi
,
M.
Li
,
T. B.
van Driel
,
K. S.
Kjaer
,
D.
Zhao
,
T.
Lenz
,
Y.
Gu
,
P. W. M.
Blom
,
D.
Damjanovic
,
M. M.
Nielsen
, and
D. M.
de Leeuw
, “
The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)
,”
Nat. Mater.
15
(
1
),
78
84
(
2016
).
39.
I.
Krakovský
,
T.
Romijn
, and
A.
Posthuma De Boer
, “
A few remarks on the electrostriction of elastomers
,”
J. Appl. Phys.
85
(
1
),
628
629
(
1999
).
40.
R. E.
Newnham
,
V.
Sundar
,
R.
Yimnirun
,
J.
Su
, and
Q. M.
Zhang
, “
Electrostriction: Nonlinear electromechanical coupling in solid dielectrics
,”
J. Phys. Chem. B
101
(
48
),
10141
10150
(
1997
).
41.
F.
Li
,
L.
Jin
,
Z.
Xu
, and
S.
Zhang
, “
Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity
,”
Appl. Phys. Rev.
1
(
1
),
011103
(
2014
).
42.
O. P.
Thakur
and
N.
Agrawal
, “
Modelling of sensing performance of electrostrictive capacitive sensors
,” in
Sensing Technology: Current Status and Future Trends III
, edited by
A.
Mason
,
S. C.
Mukhopadhyay
, and
K. P.
Jayasundera
(
Springer International Publishing
,
Cham
,
2015
), pp.
341
358
.
43.
O. P.
Thakur
and
A. K.
Singh
, “
Electrostriction and electromechanical coupling in elastic dielectrics at nanometric interfaces
,”
Mater. Sci. - Poland
27
(
3
),
839
850
(
2009
).
44.
R. E.
Pelrine
,
R. D.
Kornbluh
, and
J. P.
Joseph
, “
Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation
,”
Sens. Actuators, A
64
(
1
),
77
85
(
1998
).
45.
G. N.
Greaves
,
A. L.
Greer
,
R. S.
Lakes
, and
T.
Rouxel
, “
Poisson's ratio and modern materials
,”
Nat. Mater.
10
(
11
),
823
837
(
2011
).
46.
R.
Yimnirun
,
S.
Eury
,
V.
Sundar
,
P. J.
Moses
, and
R. E.
Newnham
, “
Compressometer based method for measuring converse electrostriction in polymers
,” in
Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report
(
1999
), pp.
338
341
.
47.
J. F.
Capsal
,
M.
Lallart
,
J.
Galineau
,
P. J.
Cottinet
,
G.
Sebald
, and
D.
Guyomar
, “
Evaluation of macroscopic polarization and actuation abilities of electrostrictive dipolar polymers using the microscopic Debye/Langevin formalism
,”
J. Phys. D: Appl. Phys.
45
(
20
),
205401
(
2012
).
48.
D.
Denning
,
J.
Guyonnet
, and
B. J.
Rodriguez
, “
Applications of piezoresponse force microscopy in materials research: From inorganic ferroelectrics to biopiezoelectrics and beyond
,”
Int. Mater. Rev.
61
(
1
),
46
70
(
2016
).
49.
D. A.
Bonnell
,
S. V.
Kalinin
,
A. L.
Kholkin
, and
A.
Gruverman
, “
Piezoresponse force microscopy: A window into electromechanical behavior at the nanoscale
,”
MRS Bull.
34
(
9
),
648
657
(
2009
).
50.
S.
Jesse
,
A. P.
Baddorf
, and
S. V.
Kalinin
, “
Switching spectroscopy piezoresponse force microscopy of ferroelectric materials
,”
Appl. Phys. Lett.
88
(
6
),
062908
(
2006
).
51.
S. V.
Kalinin
,
B. J.
Rodriguez
,
S.
Jesse
,
T.
Thundat
, and
A.
Gruverman
, “
Electromechanical imaging of biological systems with sub-10 nm resolution
,”
Appl. Phys. Lett.
87
(
5
),
053901
(
2005
).
52.
B.
Kim
,
D.
Seol
,
S.
Lee
,
H. N.
Lee
, and
Y.
Kim
, “
Ferroelectric-like hysteresis loop originated from non-ferroelectric effects
,”
Appl. Phys. Lett.
109
(
10
),
102901
(
2016
).
53.
J. S.
Sekhon
,
L.
Aggarwal
, and
G.
Sheet
, “
Voltage induced local hysteretic phase switching in silicon
,”
Appl. Phys. Lett.
104
(
16
),
162908
(
2014
).
54.
N.
Balke
,
P.
Maksymovych
,
S.
Jesse
,
A.
Herklotz
,
A.
Tselev
,
C.-B.
Eom
,
I. I.
Kravchenko
,
P.
Yu
, and
S. V.
Kalinin
, “
Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy
,”
ACS Nano
9
(
6
),
6484
6492
(
2015
).
You do not currently have access to this content.