Levitated optomechanics is showing potential for precise force measurements. Here, we report a case study to show experimentally the capacity of such a force sensor, using an electric field as a tool to detect a Coulomb force applied onto a levitated nanosphere. We experimentally observe the spatial displacement of up to 6.6 nm of the levitated nanosphere by imposing a DC field. We further apply an AC field and demonstrate resonant enhancement of force sensing when a driving frequency, ωAC, and the frequency of the levitated mechanical oscillator, ω0, converge. We directly measure a force of 3.0 ± 1.5 × 10–20 N with 10 s integration time, at a centre of mass temperature of 3 K and at a pressure of 1.6 × 10–5 mbar.

1.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
,
M. R.
Abernathy
,
F.
Acernese
,
K.
Ackley
,
C.
Adams
,
T.
Adams
,
P.
Addesso
,
R. X.
Adhikari
 et al,
Phys. Rev. Lett.
116
,
061102
(
2016
).
2.
M.
Goktas
and
K. G.
Blank
,
Adv. Mater. Interfaces
4
,
1600441
(
2017
).
3.
M.
Gierling
,
P.
Schneeweiss
,
G.
Visanescu
,
P.
Federsel
,
M.
Häffner
,
D. P.
Kern
,
T. E.
Judd
,
A.
Günther
, and
J.
Fortágh
,
Nat. Nanotechnol.
6
,
446
(
2011
).
4.
M. J.
Biercuk
,
H.
Uys
,
J. W.
Britton
,
A. P.
VanDevender
, and
J. J.
Bollinger
,
Nat. Nanotechnol.
5
,
646
(
2010
).
5.
R.
Maiwald
,
D.
Leibfried
,
J.
Britton
,
J. C.
Bergquist
,
G.
Leuchs
, and
D. J.
Wineland
,
Nat. Phys.
5
,
551
(
2009
).
6.
K.
Yasumura
,
T.
Stowe
,
E.
Chow
,
T.
Pfafman
,
T.
Kenny
,
B.
Stipe
, and
D.
Rugar
,
J. Microelectromech. Syst.
9
,
117
(
2000
).
7.
H. J.
Mamin
and
D.
Rugar
,
Appl. Phys. Lett.
79
,
3358
(
2001
).
8.
D.
Rugar
,
R.
Budakian
,
H. J.
Mamin
, and
B. W.
Chui
,
Nature
430
,
329
(
2004
).
9.
O.
Arcizet
,
P.-F.
Cohadon
,
T.
Briant
,
M.
Pinard
,
A.
Heidmann
,
J.-M.
Mackowski
,
C.
Michel
,
L.
Pinard
,
O.
Français
, and
L.
Rousseau
,
Phys. Rev. Lett.
97
,
133601
(
2006
).
10.
Y.
Tao
,
J. M.
Boss
,
B. A.
Moores
,
C. L.
Degen
, and
S. J.
Sharp
,
Nat. Commun.
5
,
3638
(
2014
).
11.
M.
Li
,
H. X.
Tang
, and
M. L.
Roukes
,
Nat. Nanotechnol.
2
,
114
(
2007
).
12.
J.
Moser
,
A.
Eichler
,
J.
Güttinger
,
M. I.
Dykman
, and
A.
Bachtold
,
Nat. Nanotechnol.
9
,
1007
(
2014
).
13.
P.
Weber
,
J.
Güttinger
,
A.
Noury
,
J.
Vergara-Cruz
, and
A.
Bachtold
,
Nat. Commun.
7
,
12496
(
2016
).
14.
E.
Gavartin
,
P.
Verlot
, and
T. J.
Kippenberg
,
Nat. Nanotechnol.
7
,
509
(
2012
).
15.
M.
Goryachev
,
D. L.
Creedon
,
E. N.
Ivanov
,
S.
Galliou
,
R.
Bourquin
, and
M. E.
Tobar
,
Appl. Phys. Lett.
100
,
243504
(
2012
).
16.
A.
Schliesser
,
G.
Anetsberger
,
R.
Rivière
,
O.
Arcizet
, and
T. J.
Kippenberg
,
New J. Phys.
10
,
095015
(
2008
).
17.
Y.-W.
Hu
,
Y.-F.
Xiao
,
Y.-C.
Liu
, and
Q.
Gong
,
Front. Phys.
8
,
475
(
2013
).
18.
J. M.
Ashkin
and
A.
Dziedzic
,
Appl. Phys. Lett.
28
,
333
(
1976
).
19.
J.
Gieseler
,
B.
Deutsch
,
R.
Quidant
, and
L.
Novotny
,
Phys. Rev. Lett.
109
,
103603
(
2012
).
20.
G.
Ranjit
,
M.
Cunningham
,
K.
Casey
, and
A. A.
Geraci
,
Phys. Rev. A
93
,
053801
(
2016
).
21.
J.
Vovrosh
,
M.
Rashid
,
D.
Hempston
,
J.
Bateman
,
M.
Paternostro
, and
H.
Ulbricht
,
J. Opt. Soc. Am. B
34
,
1421
(
2017
).
22.
S.
Kuhn
,
B. A.
Stickler
,
A.
Kosloff
,
F.
Patolsky
,
K.
Hornberger
,
M.
Arndt
, and
J.
Millen
, e-print arXiv:1702.07565 (
2017
).
23.
J.
Gieseler
,
L.
Novotny
, and
R.
Quidant
,
Nat. Phys.
9
,
806
(
2013
).
24.
T. M.
Hoang
,
Y.
Ma
,
J.
Ahn
,
J.
Bang
,
F.
Robicheaux
,
Z.-Q.
Yin
, and
T.
Li
,
Phys. Rev. Lett.
117
,
123604
(
2016
).
25.
T. M.
Hoang
,
J.
Ahn
,
J.
Bang
, and
T.
Li
,
Nat. Commun.
7
,
12250
(
2016
).
26.
L. P.
Neukirch
,
J.
Gieseler
,
R.
Quidant
,
L.
Novotny
, and
A.
Nick Vamivakas
,
Opt. Lett.
38
,
2976
(
2013
).
27.
A. A.
Geraci
,
S. B.
Papp
, and
J.
Kitching
,
Phys. Rev. Lett.
105
,
101101
(
2010
).
28.
A.
Arvanitaki
and
A. A.
Geraci
,
Phys. Rev. Lett.
110
,
071105
(
2013
).
29.
A.
Bassi
,
K.
Lochan
,
S.
Satin
,
T. P.
Singh
, and
H.
Ulbricht
,
Rev. Mod. Phys.
85
,
471
(
2013
).
30.
J.
Bateman
,
S.
Nimmrichter
,
K.
Hornberger
, and
H.
Ulbricht
,
Nat. Commun.
5
,
4788
(
2014
).
31.
A.
Großardt
,
J.
Bateman
,
H.
Ulbricht
, and
A.
Bassi
,
Phys. Rev. D
93
,
096003
(
2016
).
32.
J.
Bateman
,
I.
McHardy
,
A.
Merle
,
T. R.
Morris
, and
H.
Ulbricht
,
Sci. Rep.
5
,
8058
(
2015
).
33.
J.
Millen
,
P.
Fonseca
,
T.
Mavrogordatos
,
T.
Monteiro
, and
P.
Barker
,
Phys. Rev. Lett.
114
,
123602
(
2015
).
34.
D. C.
Moore
,
A. D.
Rider
, and
G.
Gratta
,
Phys. Rev. Lett.
113
,
251801
(
2014
).
35.
M.
Frimmer
,
J.
Gieseler
, and
L.
Novotny
,
Phys. Rev. Lett.
117
,
163601
(
2016
).
36.
O.
Romero-Isart
,
Phys. Rev. A
84
,
052121
(
2011
).
37.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
38.
V.
Braginsky
,
F.
Khalili
, and
K.
Thorne
,
Quantum Measurement
(
Cambridge University Press
,
1995
).
39.
E. E.
Wollman
,
C. U.
Lei
,
A. J.
Weinstein
,
J.
Suh
,
A.
Kronwald
,
F.
Marquardt
,
A. A.
Clerk
, and
K. C.
Schwab
,
Science
349
,
952
(
2015
).
40.
M.
Rashid
,
T.
Tufarelli
,
J.
Bateman
,
J.
Vovrosh
,
D.
Hempston
,
M. S.
Kim
, and
H.
Ulbricht
,
Phys. Rev. Lett.
117
,
273601
(
2016
).
41.
R.
Riedinger
,
S.
Hong
,
R. A.
Norte
,
J. A.
Slater
,
J.
Shang
,
A. G.
Krause
,
V.
Anant
,
M.
Aspelmeyer
, and
S.
Gröblacher
,
Nature
530
,
313
(
2016
).
42.
G. C.
Ghirardi
,
P.
Pearle
, and
A.
Rimini
,
Phys. Rev. Lett. A
42
,
78
89
(
1990
).
43.
A.
Vinante
,
R.
Mezzena
,
P.
Falferi
,
M.
Carlesso
, and
A.
Bassi
,
Phys. Rev. Lett.
119
,
110401
(
2017
).
44.
A.
Vinante
,
M.
Bahrami
,
A.
Bassi
,
O.
Usenko
,
G.
Wijts
, and
T.
Oosterkamp
,
Phys. Rev. Lett.
116
,
090402
(
2016
).
45.
The ability of the experimental setup to set bounds on the CSL parameters is related to the precision ΔT with which we can measure the temperature T of the system. Specifically, we have estimated the bounds on the CSL parameters from the condition ΔTCSL(λ,rC)ΔT, where ΔTCSL(λ,rC) denotes the theoretical temperature increase predicted by the CSL model.
46.
S.
Nimmrichter
and
K.
Hornberger
,
Phys. Rev. Lett.
110
,
160403
(
2013
).
You do not currently have access to this content.