In contrast to stability theories of nanobubbles, the molecular mechanism of how nanobubbles lose stability is far from being understood. In this work, we try to interpret recent experimental observations that the addition of surfactants destabilizes nanobubbles with an unclear mechanism. Using molecular dynamics simulations, we identify two surfactant-induced molecular mechanisms for nanobubbles losing stability, either through depinning of a contact line or reducing vapor-liquid surface tension. One corresponds to the case with significant adsorption of surfactants on the substrates, which causes depinning of the nanobubble contact line and thus leads to nanobubble instability. The other stresses surfactant adsorption on the vapor-liquid interface of nanobubbles, especially for insoluble surfactants, which reduces the surface tension of the interface and leads to an irreversible liquid-to-vapor phase transition. Our finding can help improve our understanding in nanobubble stability, and the insight presented here has implications for surface nanobubbles involving with other amphiphilic molecules, such as proteins and contaminations.

1.
D.
Lohse
and
X.
Zhang
,
Rev. Mod. Phys.
87
,
981
(
2015
).
2.
S. R.
German
,
X.
Wu
,
H.
An
,
V. S. J.
Craig
,
T. L.
Mega
, and
X.
Zhang
,
ACS Nano
8
,
6193
(
2014
).
3.
X. H.
Zhang
,
A.
Khan
,
A.
Khan
, and
W. A.
Ducker
,
Phys. Rev. Lett.
98
,
136101
(
2007
).
4.
X. H.
Zhang
,
X.
Zhang
,
J.
Sun
,
Z.
Zhang
, and
G.
Li
,
Langmuir
23
,
1778
(
2007
).
5.
X. H.
Zhang
,
A.
Quinn
, and
W. A.
Ducker
,
Langmuir
24
,
4756
(
2008
).
6.
S.-T.
Lou
,
Z.-Q.
Ouyang
,
Y.
Zhang
,
X.-J.
Li
,
J.
Hu
,
M.-Q.
Li
, and
F.-J.
Yang
,
J. Vac. Sci. Technol., B
18
,
2573
(
2000
).
7.
N.
Ishida
,
T.
Inoue
,
M.
Miyahara
, and
K.
Higashitani
,
Langmuir
16
,
6377
(
2000
).
8.
J. W. G.
Tyrrell
and
P.
Attard
,
Langmuir
18
,
160
(
2002
).
9.
D.
Li
and
X.
Zhao
,
Colloids Surf. A
459
,
128
(
2014
).
10.
B.
Bhushan
,
Y.
Pan
, and
S.
Daniels
,
J. Colloid Interface Sci.
392
,
105
(
2013
).
11.
B.
Bhushan
,
Y.
Wang
, and
A.
Maali
,
J. Phys. Condens. Matter
20
,
485004
(
2008
).
12.
W.
Walczyk
and
H.
Schönherr
,
Langmuir
29
,
620
(
2013
).
13.
W.
Walczyk
and
H.
Schönherr
,
Langmuir
30
,
7112
(
2014
).
14.
S.
Karpitschka
,
E.
Dietrich
,
J. R. T.
Seddon
,
H. J. W.
Zandvliet
,
D.
Lohse
, and
H.
Riegler
,
Phys. Rev. Lett.
109
,
066102
(
2012
).
15.
C. U.
Chan
and
C. D.
Ohl
,
Phys. Rev. Lett.
109
,
174501
(
2012
).
16.
M.
Switkes
and
J. W.
Ruberti
,
Appl. Phys. Lett.
84
,
4759
(
2004
).
17.
S.
Jeon
,
R.
Desikan
,
F.
Tian
, and
T.
Thundat
,
Appl. Phys. Lett.
88
,
103118
(
2006
).
18.
E. R.
White
,
M.
Mecklenburg
,
S. B.
Singer
,
S.
Aloni
, and
B. C.
Regan
,
Appl. Phys. Express
4
,
055201
(
2011
).
19.
H.
Seo
,
M.
Yoo
, and
S.
Jeon
,
Langmuir
23
,
1623
(
2007
).
20.
X. H.
Zhang
,
Phys. Chem. Chem. Phys.
10
,
6842
(
2008
).
21.
G.
Liu
,
Z.
Wu
, and
V. S. J.
Craig
,
J. Phys. Chem. C
112
,
16748
(
2008
).
22.
B. M.
Borkent
,
S.
De Beer
,
F.
Mugele
, and
D.
Lohse
,
Langmuir
26
,
260
(
2009
).
23.
Y.
Nam
and
Y. S.
Ju
,
Appl. Phys. Lett.
93
,
103115
(
2008
).
24.
S.
Yang
,
E. S.
Kooij
,
B.
Poelsema
,
D.
Lohse
, and
H. J. W.
Zandvliet
,
Europhys. Lett.
81
,
64006
(
2008
).
25.
X. H.
Zhang
,
N.
Maeda
, and
V. S. J.
Craig
,
Langmuir
22
,
5025
(
2006
).
26.
Y.
Shangjiong
,
S. M.
Dammer
,
N.
Bremond
,
H. J. W.
Zandvliet
,
E. S.
Kooij
, and
D.
Lohse
,
Langmuir
23
,
7072
(
2007
).
27.
Y.
Wang
and
B.
Bhushan
,
Soft Matter
6
,
29
(
2010
).
28.
M. A.
Hampton
and
A. V.
Nguyen
,
Miner. Eng.
22
,
786
(
2009
).
29.
Z. H.
Wu
,
H. B.
Chen
,
Y. M.
Dong
,
H. L.
Mao
,
J. L.
Sun
,
S. F.
Chen
,
V. S. J.
Craig
, and
J.
Hu
,
J. Colloid Interface Sci.
328
,
10
(
2008
).
30.
C. H.
Lin
and
L. A.
Wang
,
J. Vac. Sci. Technol., B
23
,
2684
(
2005
).
31.
V. S. J.
Craig
,
Soft Matter
7
,
40
(
2011
).
32.
W. A.
Ducker
,
Langmuir
25
,
8907
(
2009
).
33.
M. P.
Brenner
and
D.
Lohse
,
Phys. Rev. Lett.
101
,
214505
(
2008
).
34.
Y.
Liu
and
X.
Zhang
,
J. Chem. Phys.
138
,
014706
(
2013
).
35.
Y.
Liu
,
J.
Wang
,
X.
Zhang
, and
W.
Wang
,
J. Chem. Phys.
140
,
054705
(
2014
).
36.
Y.
Liu
and
X.
Zhang
,
J. Chem. Phys.
141
,
134702
(
2014
).
37.
J. H.
Weijs
and
D.
Lohse
,
Phys. Rev. Lett.
110
,
054501
(
2013
).
38.
D.
Lohse
and
X.
Zhang
,
Phys. Rev. E
91
,
031003
(
2015
).
39.
X.
Zhang
,
D. Y. C.
Chan
,
D.
Wang
, and
N.
Maeda
,
Langmuir
29
,
1017
(
2013
).
40.
X.
Zhang
,
H.
Lhuissier
,
C.
Sun
, and
D.
Lohse
,
Phys. Rev. Lett.
112
,
144503
(
2014
).
41.
H.
Teshima
,
T.
Nishiyama
, and
K.
Takahashi
,
J. Chem. Phys.
146
,
014708
(
2017
).
42.
B. H.
Tan
,
H.
An
, and
C.-D.
Ohl
,
Phys. Rev. Lett.
118
,
054501
(
2017
).
43.
X.
Zhang
,
M. H.
Uddin
,
H.
Yang
,
G.
Toikka
,
W.
Ducker
, and
N.
Maeda
,
Langmuir
28
,
10471
(
2012
).
44.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
45.
M. S.
Tomassone
,
A.
Couzis
,
C. M.
Maldarelli
,
J. R.
Banavar
, and
J.
Koplik
,
J. Chem. Phys.
115
,
8634
(
2001
).
46.
M.
Ferrari
,
F.
Ravera
,
L.
Liggieri
,
H.
Motschmann
,
Z.
Yi
,
J.
Krägel
, and
R.
Miller
,
J. Colloid Interface Sci.
272
,
277
(
2004
).
47.
L.
Liggieri
,
F.
Ravera
, and
M.
Ferrari
,
Langmuir
19
,
10233
(
2003
).
48.
E. E.
Meyer
,
K. J.
Rosenberg
, and
J.
Israelachvili
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
15739
(
2006
).
49.
S.
Manne
,
J. P.
Cleveland
,
H. E.
Gaub
,
G. D.
Stucky
, and
P. K.
Hansma
,
Langmuir
10
,
4409
(
1994
).

Supplementary Material

You do not currently have access to this content.