Extensible quantum computing architectures require a large array of quantum bits operating with low error rates. A quantum processor based on superconducting devices can be scaled up by stacking microchips that perform wiring, shielding, and computational functionalities. In this article, we demonstrate a vacuum thermocompression bonding technology that utilizes thin indium films as a welding agent to attach pairs of lithographically patterned chips. At 10 mK, we find a specific dc bond resistance of 49.2 μΩ cm2. We show good transmission up to 6.8 GHz in a tunnel-capped, bonded device as compared to a similar uncapped device. Finally, we fabricate and measure a set of tunnel-capped superconducting resonators, demonstrating that our bonding technology can be used in quantum computing applications.

1.
T. D.
Ladd
,
F.
Jelezko
,
R.
Laflamme
,
Y.
Nakamura
,
C.
Monroe
, and
J. L.
O'Brien
, “
Quantum computers
,”
Nature
464
,
45
53
(
2010
).
2.
T.
Monz
,
P.
Schindler
,
J. T.
Barreiro
,
M.
Chwalla
,
D.
Nigg
,
W. A.
Coish
,
M.
Harlander
,
W.
Hänsel
,
M.
Hennrich
, and
R.
Blatt
, “
14-qubit entanglement: Creation and coherence
,”
Phys. Rev. Lett.
106
,
130506
(
2011
).
3.
J.
Kelly
,
R.
Barends
,
A. G.
Fowler
,
A.
Megrant
,
E.
Jeffrey
,
T. C.
White
,
D.
Sank
,
J. Y.
Mutus
,
B.
Campbell
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
I.-C.
Hoi
,
C.
Neill
,
P. J. J.
O'Malley
,
C.
Quintana
,
P.
Roushan
,
A.
Vainsencher
,
J.
Wenner
,
A. N.
Cleland
, and
J. M.
Martinis
, “
State preservation by repetitive error detection in a superconducting quantum circuit
,”
Nature
519
,
66
69
(
2015
).
4.
J. M.
Martinis
, “
Qubit metrology for building a fault-tolerant quantum computer
,”
NPJ Quantum Inf.
1
,
15005
(
2015
).
5.
N. C.
Jones
,
R. V.
Meter
,
A. G.
Fowler
,
P. L.
McMahon
,
J.
Kim
,
T. D.
Ladd
, and
Y.
Yamamoto
, “
Layered architecture for quantum computing
,”
Phys. Rev. X
2
,
031007
(
2012
).
6.
C.
Monroe
and
J.
Kim
, “
Scaling the ion trap quantum processor
,”
Science
339
,
1164
1169
(
2013
).
7.
J.
O'Gorman
,
N. H.
Nickerson
,
P.
Ross
,
J. J. L.
Morton
, and
S. C.
Benjamin
, “
A silicon-based surface code quantum computer
,”
NPJ Quantum Inf.
2
,
15019
(
2016
).
8.
B.
Lekitsch
,
S.
Weidt
,
A. G.
Fowler
,
K.
Mølmer
,
S. J.
Devitt
,
C.
Wunderlich
, and
W. K.
Hensinger
, “
Blueprint for a microwave trapped ion quantum computer
,”
Science Advances
3
,
1
11
(
2017
).
9.
J.
Clarke
and
F. K.
Wilhelm
, “
Superconducting quantum bits
,”
Nature
453
,
1031
1042
(
2008
).
10.
S.
Boixo
,
S. V.
Isakov
,
V. N.
Smelyanskiy
,
R.
Babbush
,
N.
Ding
,
Z.
Jiang
,
M. J.
Bremner
,
J. M.
Martinis
, and
H.
Neven
, “
Characterizing quantum supremacy in near-term devices
,” preprint arXiv:1608.00263 (
2017
).
11.
D.
Gottesman
, “
An introduction to quantum error correction and fault-tolerant quantum computation
,”
Proc. Symp. Appl. Math.
68
,
13
58
(
2010
).
12.
A. G.
Fowler
,
M.
Mariantoni
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Surface codes: Towards practical large-scale quantum computation
,”
Phys. Rev. A
86
,
032324
(
2012
).
13.
A. D.
Córcoles
,
E.
Magesan
,
S. J.
Srinivasan
,
A. W.
Cross
,
M.
Steffen
,
J. M.
Gambetta
, and
J. M.
Chow
, “
Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
,”
Nat. Commun.
6
,
6979
(
2015
).
14.
D.
Ristè
,
S.
Poletto
,
M.-Z.
Huang
,
A.
Bruno
,
V.
Vesterinen
,
O.-P.
Saira
, and
L.
DiCarlo
, “
Detecting bit-flip errors in a logical qubit using stabilizer measurements
,”
Nat. Commun.
6
,
6983
(
2015
).
15.
N.
Ofek
,
A.
Petrenko
,
R.
Heeres
,
P.
Reinhold
,
Z.
Leghtas
,
B.
Vlastakis
,
Y.
Liu
,
L.
Frunzio
,
S. M.
Girvin
,
L.
Jiang
,
M.
Mirrahimi
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
Extending the lifetime of a quantum bit with error correction in superconducting circuits
,”
Nature
536
,
441
445
(
2016
).
16.
J. H.
Béjanin
,
T. G.
McConkey
,
J. R.
Rinehart
,
C. T.
Earnest
,
C. R. H.
McRae
,
D.
Shiri
,
J. D.
Bateman
,
Y.
Rohanizadegan
,
B.
Penava
,
P.
Breul
,
S.
Royak
,
M.
Zapatka
,
A. G.
Fowler
, and
M.
Mariantoni
, “
Three-dimensional wiring for extensible quantum computing: The quantum socket
,”
Phys. Rev. Appl.
6
,
044010
(
2016
).
17.
T.
Brecht
,
W.
Pfaff
,
C.
Wang
,
Y.
Chu
,
L.
Frunzio
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
Multilayer microwave integrated quantum circuits for scalable quantum computing
,”
NPJ Quantum Inf.
2
,
16002
(
2016
).
18.
T.
Brecht
,
M.
Reagor
,
Y.
Chu
,
W.
Pfaff
,
C.
Wang
,
L.
Frunzio
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
Demonstration of superconducting micromachined cavities
,”
Appl. Phys. Lett.
107
,
192603
(
2015
).
19.
T.
Brecht
,
Y.
Chu
,
C.
Axline
,
W.
Pfaff
,
J. Z.
Blumoff
,
K.
Chou
,
L.
Krayzman
,
L.
Frunzio
, and
R. J.
Schoelkopf
, “
Micromachined integrated quantum circuit containing a superconducting qubit
,”
Phys. Rev. Appl.
7
,
044018
(
2017
).
20.
W.
O'Brien
,
M.
Vahidpour
,
J. T.
Whyland
,
J.
Angeles
,
D.
Scarabelli
,
G.
Crossman
,
K.
Yadav
,
Y.
Mohan
,
C.
Bui
,
V.
Rawat
,
R.
Renzas
,
N.
Vodrahalli
,
A.
Bestwick
, and
C.
Rigetti
, “
Superconducting caps for quantum integrated circuits
,” preprint arXiv:1708.02219 (
2017
).
21.
D.
Rosenberg
,
D.
Kim
,
R.
Das
,
D.
Yost
,
S.
Gustavsson
,
D.
Hover
,
P.
Krantz
,
A.
Melville
,
L.
Racz
,
G. O.
Samach
,
S. J.
Weber
,
F.
Yan
,
J.
Yoder
,
A. J.
Kerman
, and
W. D.
Oliver
, “
3D integrated superconducting qubits
,” preprint arXiv:1706.04116 (
2017
).
22.
B.
Foxen
,
J. Y.
Mutus
,
E.
Lucero
,
R.
Graff
,
A.
Megrant
,
Y.
Chen
,
C.
Quintana
,
B.
Burkett
,
J.
Kelly
,
E.
Jeffrey
,
Y.
Yang
,
A.
Yu
,
K.
Arya
,
R.
Barends
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
T.
Huang
,
P.
Klimov
,
M.
Neeley
,
C.
Neill
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
, and
J. M.
Martinis
, “
Qubit compatible superconducting interconnects
,” preprint arXiv:1708.04270 (
2017
).
23.
R.
Versluis
,
S.
Poletto
,
N.
Khammassi
,
N.
Haider
,
D. J.
Michalak
,
A.
Bruno
,
K.
Bertels
, and
L.
DiCarlo
, “
Scalable quantum circuit and control for a superconducting surface code
,” preprint arXiv:1612.08208 (
2016
).
24.
This design guarantees that a dc current flows through the bond region and the metallized tunnel when measuring the dc resistance between the two base-chip islands.
25.
See http://www.ansys.com/Products/Electronics/ANSYS-Q3D-Extractor for details on the software, which makes it possible to extract lumped element parameters (e.g., resistance) from quasi-static electromagnetic field simulations.
26.
J.
Wenner
,
M.
Neeley
,
R. C.
Bialczak
,
M.
Lenander
,
E.
Lucero
,
A. D.
O'Connell
,
D.
Sank
,
H.
Wang
,
M.
Weides
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits
,”
Supercond. Sci. Technol.
24
,
065001
(
2011
).
27.
C.
Neill
,
A.
Megrant
,
R.
Barends
,
Y.
Chen
,
B.
Chiaro
,
J.
Kelly
,
J. Y.
Mutus
,
P. J. J.
O'Malley
,
D.
Sank
,
J.
Wenner
,
T. C.
White
,
Y.
Yin
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Fluctuations from edge defects in superconducting resonators
,”
Appl. Phys. Lett.
103
,
072601
(
2013
).

Supplementary Material

You do not currently have access to this content.