Atomic force microscopy has enabled imaging at the sub-molecular level, and 3D mapping of the tip-surface potential field. However, fast identification of the surface still remains a challenging topic for the microscope to enjoy widespread use as a tool with chemical contrast. In this paper, as a step towards implementation of such function, we introduce a control scheme and mathematical treatment of the acquired data that enable retrieval of essential information characterizing this potential field, leading to fast acquisition of images with chemical contrast. The control scheme is based on the tip sample distance modulation at an angular frequency ω , and null-control of the ω component of the measured self-excitation frequency of the oscillator. It is demonstrated that this control is robust, and that effective Morse Parameters that give satisfactory curve fit to the measured frequency shift can be calculated at rates comparable to the scan. Atomic features with similar topography were distinguished by differences in these parameters. The decay length parameter was resolved with a resolution of 10 pm. The method was demonstrated on quenched silicon at a scan rate comparable to conventional imaging.

2.
O.
Guillermet
,
S.
Gauthier
,
C.
Joachim
,
P.
de Mendoza
,
T.
Lauterbach
, and
A.
Echavarren
,
Chem. Phys. Lett.
511
,
482
(
2011
).
3.
Z.
Majzik
,
A. B.
Cuenca
,
N.
Pavliček
,
N.
Miralles
,
G.
Meyer
,
L.
Gross
, and
E.
Fernández
,
ACS Nano
10
,
5340
(
2016
).
4.
L.
Gross
,
Z. L.
Wang
,
D.
Ugarte
,
F.
Mohn
,
N.
Moll
,
W. a.
Heer
,
P.
Vincent
,
P.
Liljeroth
,
C.
Journet
,
G.
Meyer
,
V. T.
Binh
,
M.
Poot
,
H. S. J. V. D.
Zant
,
A.
Aguasca
,
A.
Bachtold
,
K.
Kim
,
A.
Zettl
,
P.
Hung
,
H. W. C.
Postma
,
M.
Bockrath
,
X.
Blase
, and
S.
Roche
,
Science
325
,
1110
(
2009
).
5.
L.
Gross
,
F.
Mohn
,
N.
Moll
,
G.
Meyer
,
R.
Ebel
,
W. M.
Abdel-Mageed
, and
M.
Jaspars
,
Nat. Chem.
2
,
821
(
2010
).
6.
J.
Van Der Lit
,
F.
Di Cicco
,
P.
Hapala
,
P.
Jelinek
, and
I.
Swart
,
Phys. Rev. Lett.
116
,
096102
(
2016
).
7.
P.
Hapala
,
M.
Svec
,
O.
Stetsovych
,
M.
Ondracek
,
P.
Mutombo
,
P.
Jelinek
,
J.
van der Lit
,
N. J.
van der Heijden
, and
I.
Swart
,
Nat. Commun.
7
,
11560
(
2016
).
8.
D. W.
Abraham
,
C. C.
Williams
, and
H. K.
Wickramasinghe
,
J. Microsc.
152
,
599
(
1988
).
9.
Y.
Sugimoto
,
T.
Namikawa
,
M.
Abe
, and
S.
Morita
,
Appl. Phys. Lett.
94
,
023108
(
2009
).
10.
D. W.
Pohl
and
R.
Möller
,
Rev. Sci. Instrum.
59
,
840
(
1988
).
11.
H.
Kawakatsu
and
T.
Higuchi
,
J. Vac. Sci. Technol., A
8
,
319
(
1990
).
12.
H.
Kawakatsu
,
Y.
Hoshi
,
T.
Higuchi
, and
H.
Kitano
,
J. Vac. Sci. Technol., B
9
,
651
(
1991
).
13.
H.
Kawakatsu
and
D.
Kobayashi
, “
Dynamic mode AFM apparatus
,” U.S. patent US2011/0055983A1 (April 8th, 2009).
14.
S.
Rode
,
M.
Schreiber
,
A.
Kühnle
, and
P.
Rahe
,
Rev. Sci. Instrum.
85
,
043707
(
2014
).
15.
S.
Kawai
,
S.
Hafizovic
,
T.
Glatzel
,
A.
Baratoff
, and
E.
Meyer
,
Phys. Rev. B
85
,
165426
(
2012
).
16.
17.
S.
Flügge
,
Practical Quantum Mechanics
(
Springer-Verlag
,
Berlin/Heidelberg
,
1999
), p.
1974
.
18.
P.
Atkins
and
J.
De Paula
,
Physical Chemistry
(
O. U. Press
,
2006
).
19.
L. A.
Girifalco
and
V. G.
Weizer
,
Phys. Rev.
114
,
687
(
1959
).
20.
J. P. K.
Doye
and
D. J.
Wales
,
J. Chem. Soc., Faraday Trans.
93
,
4233
(
1997
).
21.
H.
Li
,
P. N.
Roy
, and
R. J.
Le Roy
,
J. Chem. Phys.
132
,
214309
(
2010
).
22.
W. B.
Person
,
J. Chem. Phys.
38
,
109
(
1963
).
23.
R.
Mahlanen
,
J.-P.
Jalkanen
, and
T. A.
Pakkanen
,
Chem. Phys.
313
,
271
(
2005
).
24.
Y.
Zhou
,
M.
Karplus
,
K. D.
Ball
, and
R. S.
Berry
,
J. Chem. Phys.
116
,
2323
(
2002
).
25.
26.
H.
Erkol
and
E.
Demiralp
,
Mol. Phys.
107
,
2053
(
2009
).
27.
E. S.
Chen
and
E. C. M.
Chen
,
J. Phys. Chem. A
106
,
6665
(
2002
).
28.
A. G.
Vela
,
J. Phys. Chem.
109
,
5545
(
2005
).
29.
F. J.
Giessibl
,
Phys. Rev. B
56
,
16010
(
1997
).
30.
J. E.
Sader
and
S. P.
Jarvis
,
Phys. Rev. B
70
,
012303
(
2004
).
31.
J. E.
Sader
and
S. P.
Jarvis
,
Appl. Phys. Lett.
84
,
1801
(
2004
).
32.
N.
Umeda
,
J. Vac. Sci. Technol., B
9
,
1318
(
1991
).
33.
S.
Nishida
,
D.
Kobayashi
,
H.
Kawakatsu
, and
Y.
Nishimori
,
J. Vac. Sci. Technol., B
27
,
964
(
2009
).
34.
A.
Hoel
,
T.
Osaki
,
S.
Takeuchi
,
S.
Volz
, and
H.
Kawakatsu
,
Appl. Phys. Lett.
101
,
063117
(
2012
).
35.
Y.
Sugimoto
,
P.
Pou
,
M.
Abe
,
P.
Jelinek
,
R.
Pérez
,
S.
Morita
, and
O.
Custance
,
Nature
446
,
64
(
2007
).
36.
M.
Guggisberg
,
M.
Bammerlin
,
C.
Loppacher
,
O.
Pfeiffer
,
A.
Abdurixit
,
V.
Barwich
,
R.
Bennewitz
,
A.
Baratoff
,
E.
Meyer
, and
H.-J.
Güntherodt
,
Phys. Rev. B
61
,
11151
(
2000
).
37.
Z.
Sun
,
M. P.
Boneschanscher
,
I.
Swart
,
D.
Vanmaekelbergh
, and
P.
Liljeroth
,
Phys. Rev. Lett.
106
,
46104
(
2011
).
38.
S.
Kawai
,
A. S.
Foster
,
T.
Björkman
,
S.
Nowakowska
,
J.
Björk
,
F. F.
Canova
,
L. H.
Gade
,
T. A.
Jung
, and
E.
Meyer
,
Nat. Commun.
7
,
11559
(
2016
).
39.
S.
Katano
,
Y.
Kim
,
H.
Matsubara
,
T.
Kitagawa
, and
M.
Kawai
,
J. Am. Chem. Soc.
129
,
2511
(
2007
).
40.
S.
Kawai
,
S.
Kitamura
,
D.
Kobayashi
,
S.
Meguro
, and
H.
Kawakatsu
,
Appl. Phys. Lett.
86
,
193107
(
2005
).

Supplementary Material

You do not currently have access to this content.