The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

1.
A.
Khitun
,
M.
Bao
, and
K.
Wang
,
IEEE Trans. Magn.
44
,
2141
(
2008
).
2.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Phys.
11
,
453
(
2015
).
3.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
,
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
4.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
,
J. Phys. D: Appl. Phys.
43
,
264002
(
2010
).
5.
G.
Csaba
,
A.
Papp
, and
W.
Porod
,
J. Appl. Phys.
115
,
17C741
(
2014
).
6.
G.
Csaba
,
A.
Papp
, and
W.
Porod
,
Phys. Lett. A
381
,
1471
(
2017
).
7.
O.
Zografos
,
P.
Raghavan
,
L.
Amarù
,
B.
Sorée
,
R.
Lauwereins
,
I.
Radu
,
D.
Verkest
, and
A.
Thean
,
System-level assessment and area evaluation of spin wave logic circuits
, in 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (
2014
).
8.
A.
Khitun
,
J. Appl. Phys.
111
,
054307
(
2012
).
9.
E.
Egel
,
C.
Meier
,
G.
Csaba
, and
S.
Breitkreutz-von Gamm
,
AIP Adv.
7
,
056016
(
2017
).
10.
T.
Brächer
,
F.
Heussner
,
P.
Pirro
,
T.
Meyer
,
T.
Fischer
,
M.
Geilen
,
B.
Heinz
,
B.
Lägel
,
A. A.
Serga
, and
B.
Hillebrands
,
Sci. Rep.
6
,
38235
(
2016
).
11.
A.
Khitun
,
Energy dissipation in magnonic logic circuits in IEEE 12th International Conference on Nanotechnology (IEEE-NANO)
(
2012
).
12.
F.
Garcia-Sanchez
,
P.
Borys
,
R.
Soucaille
,
J.-P.
Adam
,
R. L.
Stamps
, and
J.-V.
Kim
,
Phys. Rev. Lett.
114
,
247206
(
2015
).
13.
K.
Wagner
,
A.
Kákay
,
K.
Schultheiss
,
A.
Henschke
,
T.
Sebastian
, and
H.
Schultheiss
,
Nat. Nanotechnol.
11
,
432
(
2016
).
14.
O.
Dzyapko
,
I. V.
Borisenko
,
V. E.
Demidov
,
W.
Pernice
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
109
,
232407
(
2016
).
15.
S.
Klingler
,
P.
Pirro
,
T.
Brächer
,
B.
Leven
,
B.
Hillebrands
, and
A. V.
Chumak
,
Appl. Phys. Lett.
106
,
212406
(
2015
).
16.
T.
Fischer
,
M.
Kewenig
,
D. A.
Bozhko
,
A. A.
Serga
,
I. I.
Syvorotka
,
F.
Ciubotaru
,
C.
Adelmann
,
B.
Hillebrands
, and
A. V.
Chumak
,
Appl. Phys. Lett.
110
,
152401
(
2017
).
17.
K.-S.
Lee
and
S.-K.
Kim
,
J. Appl. Phys.
104
,
053909
(
2008
).
18.
A. V.
Sadovnikov
,
C. S.
Davies
,
S. V.
Grishin
,
V. V.
Kruglyak
,
D. V.
Romanenko
,
Y. P.
Sharaevskii
, and
S. A.
Nikitov
,
Appl. Phys. Lett.
106
,
192406
(
2015
).
19.
C. S.
Davies
,
A.
Francis
,
A. V.
Sadovnikov
,
S. V.
Chertopalov
,
M. T.
Bryan
,
S. V.
Grishin
,
D. A.
Allwood
,
Y. P.
Sharaevskii
,
S. A.
Nikitov
, and
V. V.
Kruglyak
,
Phys. Rev. B
92
,
020408(R)
(
2015
).
20.
C. S.
Davies
,
A. V.
Sadovnikov
,
S. V.
Grishin
,
Y. P.
Sharaevsky
,
S. A.
Nikitov
, and
V. V.
Kruglyak
,
IEEE Trans. Magn.
51
,
3401904
(
2015
).
21.
K.
Vogt
,
H.
Schultheiss
,
S.
Jain
,
J. E.
Pearson
,
A.
Hoffmann
,
S. D.
Bader
, and
B.
Hillebrands
,
Appl. Phys. Lett.
101
,
042410
(
2012
).
22.
K.
Vogt
,
F. Y.
Fradin
,
J. E.
Pearson
,
T.
Sebastian
,
S. D.
Bader
,
B.
Hillebrands
,
A.
Hoffmann
, and
H.
Schultheiss
,
Nat. Commun.
5
,
3727
(
2014
).
23.
T.
Schneider
,
A. A.
Serga
,
B.
Hillebrands
, and
M.
Kostylev
,
J. Nanoelectron. Optoelectron.
3
(
1
),
69
(
2008
).
24.
T.
Schneider
,
A. A.
Serga
,
B.
Leven
,
B.
Hillebrands
,
R. L.
Stamps
, and
M. P.
Kostylev
,
Appl. Phys. Lett.
92
,
022505
(
2008
).
25.
T.
Brächer
,
F.
Heussner
,
P.
Pirro
,
T.
Fischer
,
M.
Geilen
,
B.
Heinz
,
B.
Lägel
,
A. A.
Serga
, and
B.
Hillebrands
,
Appl. Phys. Lett.
105
,
232409
(
2014
).
26.
A. V.
Chumak
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Commun.
5
,
4700
(
2014
).
27.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
,
J. Phys. D: Appl. Phys.
43
,
264005
(
2010
).
28.
V.
Veerakumar
and
R. E.
Camley
,
Phys. Rev. B
74
,
214401
(
2006
).
29.
T.
Schneider
,
A. A.
Serga
,
A. V.
Chumak
,
C. W.
Sandweg
,
S.
Trudel
,
S.
Wolff
,
M. P.
Kostylev
,
V. S.
Tiberkevich
,
A. N.
Slavin
, and
B.
Hillebrands
,
Phys. Rev. Lett.
104
,
197203
(
2010
).
30.
V. E.
Demidov
,
S. O.
Demokritov
,
D.
Birt
,
B.
O'Gorman
,
M.
Tsoi
, and
X.
Li
,
Phys. Rev. B
80
,
014429
(
2009
).
31.
T.
Sebastian
,
T.
Brächer
,
P.
Pirro
,
A. A.
Serga
,
B.
Hillebrands
,
T.
Kubota
,
H.
Naganuma
,
M.
Oogane
, and
Y.
Ando
,
Phys. Rev. Lett.
110
,
067201
(
2013
).
32.
R.
Gieniusz
,
H.
Ulrichs
,
V. D.
Bessonov
,
U.
Guzowska
,
A. I.
Stognii
, and
A.
Maziewski
,
Appl. Phys. Lett.
102
,
102409
(
2013
).
33.
J.-V.
Kim
,
R. L.
Stamps
, and
R. E.
Camley
,
Phys. Rev. Lett.
117
,
197204
(
2016
).
34.
J. J.
Bible
and
R. E.
Camley
,
Phys. Rev. B
95
,
224412
(
2017
).
35.
Material parameters: saturation magnetization MS = 810 kA/m, exchange constant Aex = 13 pJ/m, Gilbert damping constant α = 8 × 10–3.
36.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
,
AIP Adv.
4
,
107133
(
2014
).
37.
T.
Brächer
,
O.
Boulle
,
G.
Gaudin
, and
P.
Pirro
,
Phys. Rev. B
95
,
064429
(
2017
).
38.
P.
Pirro
,
T.
Brächer
,
K.
Vogt
,
B.
Obry
,
H.
Schultheiss
,
B.
Leven
, and
B.
Hillebrands
,
Phys. Status Solidi B
248
(
10
),
2404
2408
(
2011
).
39.
B. A.
Kalinikos
and
A. N.
Slavin
,
J. Phys. C: Solid State Phys.
19
,
7013
(
1986
).
40.
V. E.
Demidov
,
S.
Urazhdin
,
E. R. J.
Edwards
,
M. D.
Stiles
,
R. D.
McMichael
, and
S. O.
Demokritov
,
Phys. Rev. Lett.
107
,
107204
(
2011
).
41.
T.
Meyer
,
T.
Brächer
,
F.
Heussner
,
A. A.
Serga
,
H.
Naganuma
,
K.
Mukaiyama
,
M.
Oogane
,
Y.
Ando
,
B.
Hillebrands
, and
P.
Pirro
,
IEEE Magn. Lett.
8
,
318005
(
2017
).
42.
The calculations consider the effective magnetic field Beff = 31.25 ± 0.65 mT and the effective waveguide width weff = 0.8 ± 0.1 μm of the output waveguides, which are extracted from the simulation. These effective values and their uncertainties take into account demagnetization fields which lead to strongly decreased internal magnetic fields at the edges of the waveguides and a variation of the internal field during the transition from the unstructured film area to the waveguides.
You do not currently have access to this content.