We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm−2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.

1.
2.
M.
Asghari
and
A. V.
Krishnamoorthy
,
Nat. Photonics
5
,
268
(
2011
).
3.
J. E.
Bowers
,
T.
Komljenovic
,
M.
Davenport
,
J.
Hulme
,
A. Y.
Liu
,
C. T.
Santis
,
A.
Spott
,
S.
Srinivasan
,
E. J.
Stanton
, and
C.
Zhang
, “
Recent Advances in Silicon Photonic Integrated Circuits
,”
Proc. SPIE
9774
,
977402
(
2016
).
4.
T.
Wang
,
H. Y.
Liu
,
A.
Lee
,
F.
Pozzi
, and
A.
Seeds
,
Opt. Express
19
,
11381
(
2011
).
5.
A. D.
Lee
,
Q.
Jiang
,
M. C.
Tang
,
Y. Y.
Zhang
,
A. J.
Seeds
, and
H. Y.
Liu
,
IEEE J. Sel. Top. Quantum Electron.
19
,
1901107
(
2013
).
6.
A. Y.
Liu
,
C.
Zhang
,
J.
Norman
,
A.
Snyder
,
D.
Lubyshev
,
J. M.
Fastenau
,
A. W. K.
Liu
,
A. C.
Gossard
, and
J. E.
Bowers
,
Appl. Phys. Lett.
104
,
041104
(
2014
).
7.
S. M.
Chen
,
W.
Li
,
J.
Wu
,
Q.
Jiang
,
M. C.
Tang
,
S.
Shutts
,
S. N.
Elliott
,
A.
Sobiesierski
,
A. J.
Seeds
,
I.
Ross
,
P. M.
Smowton
, and
H. Y.
Liu
,
Nat. Photonics
10
,
307
(
2016
).
8.
H.
Kroemer
,
K. J.
Polasko
, and
S. C.
Wright
,
Appl. Phys. Lett.
36
,
763
(
1980
).
9.
A. Y.
Liu
,
J.
Peters
,
X.
Huang
,
D.
Jung
,
J.
Norman
,
M. L.
Lee
,
A. C.
Gossard
, and
J. E.
Bowers
,
Opt. Lett.
42
,
338
(
2017
).
10.
I.
Nemeth
,
B.
Kunert
,
W.
Stolz
, and
K.
Volz
,
J. Cryst. Growth
310
,
1595
(
2008
).
11.
J.
Norman
,
M. J.
Kennedy
,
J.
Selvidge
,
Q.
Li
,
Y. T.
Wan
,
A. Y.
Liu
,
P. G.
Callahan
,
M. P.
Echlin
,
T. M.
Pollock
,
K. M.
Lau
,
A. C.
Gossard
, and
J. E.
Bowers
,
Opt. Express
25
,
3927
(
2017
).
12.
S. M.
Chen
,
M. Y.
Liao
,
M. C.
Tang
,
J.
Wu
,
M.
Martin
,
T.
Baron
,
A.
Seeds
, and
H. Y.
Liu
,
Opt. Express
25
,
4632
(
2017
).
13.
M.
Yamaguchi
,
M.
Tachikawa
,
Y.
Itoh
,
M.
Sugo
, and
S.
Kondo
,
J. Appl. Phys.
68
,
4518
(
1990
).
14.
M.
Yamaguchi
,
M.
Sugo
, and
Y.
Itoh
,
Appl. Phys. Lett.
54
,
2568
(
1989
).
15.
K. N.
Yaung
,
S.
Kirnstoetter
,
J.
Faucher
,
A.
Gerger
,
A.
Lochtefeld
,
A.
Barnett
, and
M. L.
Lee
,
J. Cryst. Growth.
453
,
65
(
2016
).
16.
K.
Nishi
,
T.
Kageyama
,
M.
Yamaguchi
,
Y.
Maeda
,
K.
Takemasa
,
T.
Yamamoto
,
M.
Sugawara
, and
Y.
Arakawa
,
J. Cryst. Growth.
378
,
459
(
2013
).
17.
M.
Fukuda
,
M.
Okayasu
,
J.
Temmyo
, and
J.
Nakano
,
IEEE J. Quantum Electron.
30
,
471
(
1994
).
18.
S.
Kamiyama
,
Y.
Mori
,
Y.
Takahashi
, and
K.
Ohnaka
,
Appl. Phys. Lett.
58
,
2595
(
1991
).
19.
O. B.
Shchekin
and
D. G.
Deppe
,
Appl. Phys. Lett.
80
,
3277
(
2002
).
20.
A. Y.
Liu
,
C.
Zhang
,
A.
Snyder
,
D.
Lubyshev
,
J. M.
Fastenau
,
A. W. K.
Liu
,
A. C.
Gossard
, and
J. E.
Bowers
,
J. Vac. Sci. Technol. B
32
,
02C108
(
2014
).
21.
A. Y.
Liu
,
R. W.
Herrick
,
O.
Ueda
,
P. M.
Petroff
,
A. C.
Gossard
, and
J. E.
Bowers
,
IEEE J. Sel. Top. Quantum Electron.
21
,
1900708
(
2015
).
You do not currently have access to this content.