In this paper, we have developed a high-performance graphene electrothermal actuator (ETA). The fabrication method is easy, fast, environmentally friendly, and suitable for preparing both large-size and miniature graphene ETAs. When applied with the driving voltage of 65 V, the graphene ETA achieves a large bending angle of 270° with a fast response of 8 s and the recovery process costs 19 s. The large bending deformation is reversible and can be precisely controlled by the driving voltage. A simple robotic hand prepared by using a single graphene ETA can hold the object, which is more than ten times the weight of itself. By virtue of its large-strain, fast response, and easy-to-manufacture, we believe that the graphene ETA has tremendous potential in extensive applications involving biomimetic robotics, artificial muscles, switches, and microsensors in both macroscopic and microscopic fields.

1.
R. H.
Baughman
,
Science
284
(
5418
),
1340
1344
(
1999
).
2.
J. D.
Madden
,
Science
318
(
5853
),
1094
1097
(
2007
).
3.
J.
Lu
,
S.-G.
Kim
,
S.
Lee
, and
I.-K.
Oh
,
Adv. Funct. Mater.
18
(
8
),
1290
1298
(
2008
).
4.
J.-H.
Jeon
and
I.-K.
Oh
,
Thin Solid Films
517
(
17
),
5288
5292
(
2009
).
5.
S.-W.
Yeom
and
I.-K.
Oh
,
Smart Mater. Struct.
18
(
8
),
085002
(
2009
).
6.
D. K.
Seo
,
T. J.
Kang
,
D. W.
Kim
, and
Y. H.
Kim
,
Nanotechnology
23
(
7
),
075501
(
2012
).
7.
J.
Kim
,
J. H.
Jeon
,
H. J.
Kim
,
H.
Lim
, and
I. K.
Oh
,
ACS Nano
8
(
3
),
2986
2997
(
2014
).
8.
M.
Kotal
,
J.
Kim
,
K. J.
Kim
, and
I. K.
Oh
,
Adv. Mater.
28
(
8
),
1610
1615
(
2016
).
9.
R.
Pelrine
,
R.
Kornbluh
, and
G.
Kofod
,
Adv. Mater.
12
(
16
),
1223
1225
(
2000
).
10.
R.
Pelrine
,
R.
Kornbluh
,
Q. B.
Pei
, and
J.
Joseph
,
Science
287
(
5454
),
836
839
(
2000
).
11.
F.
Carpi
,
G.
Gallone
,
F.
Galantini
, and
D.
De Rossi
,
Adv. Funct. Mater.
18
(
2
),
235
241
(
2008
).
12.
P.
Brochu
and
Q.
Pei
,
Macromol. Rapid Commun.
31
(
1
),
10
36
(
2010
).
13.
S. E.
Zhu
,
R.
Shabani
,
J.
Rho
,
Y.
Kim
,
B. H.
Hong
,
J. H.
Ahn
, and
H. J.
Cho
,
Nano Lett.
11
(
3
),
977
981
(
2011
).
14.
L.
Chen
,
C.
Liu
,
K.
Liu
,
C.
Meng
,
C.
Hu
,
J.
Wang
, and
S.
Fan
,
ACS Nano
5
(
3
),
1588
1593
(
2011
).
15.
Y.
Hu
,
W.
Chen
,
L.
Lu
,
J.
Liu
, and
C.
Chang
,
ACS Nano
4
(
6
),
3498
3502
(
2010
).
16.
A. T.
Sellinger
,
D. H.
Wang
,
L. S.
Tan
, and
R. A.
Vaia
,
Adv. Mater.
22
(
31
),
3430
3435
(
2010
).
17.
Y.
Hu
,
G.
Wang
,
X.
Tao
, and
W.
Chen
,
Macromol. Chem. Phys.
212
(
15
),
1671
1676
(
2011
).
18.
L. Z.
Chen
,
C. H.
Liu
,
C. H.
Hu
, and
S. S.
Fan
,
Appl. Phys. Lett.
92
(
26
),
263104
(
2008
).
19.
C.
Wang
,
Y.
Wang
,
Y.
Yao
,
W.
Luo
,
J.
Wan
,
J.
Dai
,
E.
Hitz
,
K. K.
Fu
, and
L.
Hu
,
Adv. Mater.
28
(
39
),
8618
8624
(
2016
).
20.
J.
Liang
,
L.
Huang
,
N.
Li
,
Y.
Huang
,
Y.
Wu
,
S.
Fang
,
J.
Oh
,
M.
Kozlov
,
Y.
Ma
,
F.
Li
,
R.
Baughman
, and
Y.
Chen
,
ACS Nano
6
(
5
),
4508
4519
(
2012
).
21.
Q.
Li
,
C.
Liu
,
Y. H.
Lin
,
L.
Liu
,
K.
Jiang
, and
S.
Fan
,
ACS Nano
9
(
1
),
409
418
(
2015
).
22.
T.-Y.
Zhang
,
H.-M.
Zhao
,
Z.
Yang
,
Q.
Wang
,
D.-Y.
Wang
,
N.-Q.
Deng
,
Y.
Yang
, and
T.-L.
Ren
,
Appl. Phys. Lett.
109
(
15
),
151905
(
2016
).
23.
H.
Tian
,
Y.
Yang
,
D.
Xie
,
Y. L.
Cui
,
W. T.
Mi
,
Y.
Zhang
, and
T. L.
Ren
,
Sci. Rep.
4
,
3598
(
2014
).
24.
R.
Trusovas
,
K.
Ratautas
,
G.
Račiukaitis
,
J.
Barkauskas
,
I.
Stankevičienė
,
G.
Niaura
, and
R.
Mažeikienė
,
Carbon
52
,
574
582
(
2013
).
25.
Z.
Zeng
,
H.
Jin
,
L.
Zhang
,
H.
Zhang
,
Z.
Chen
,
F.
Gao
, and
Z.
Zhang
,
Carbon
84
,
327
334
(
2015
).

Supplementary Material

You do not currently have access to this content.