UV-light irradiation of Au nanoparticle (NP)-loaded mesoporous TiO2 nanocrystalline films in an ethanol solution of Cd(NO3)2 and S8 at 298 K gives rise to selective CdS deposition on Au NPs to yield Au(core)-CdS(shell) hybrid quantum dots (Au@CdS/mp-TiO2). Two-electrode quantum dot-sensitized photoelectrochemical cells with the structure of photoanode|0.25 M Na2S, 0.35 M Na2SO3 (solvent = water)|cathode were fabricated. The Au@CdS/mp-TiO2 photoanode cell yields hydrogen (H2) with a rate of 0.18 ml h−1 [solar-to-current efficiency (STCE) = 0.028%] without external bias far surpassing the rate of 0.028 ml h−1 (solar-to-current efficiency = 0.006%) for the CdS/mp-TiO2 photoanode cell under illumination of simulated sunlight (λ > 430 nm, AM 1.5, one sun). The 3D finite-difference time-domain calculations for a model Au@CdS/TiO2 system indicate that an intense local electric field with an enhancement factor of ∼103 is generated at the Au-CdS-TiO2 three-phase interface. The striking effect of the Au core stems from the enhancement of the excitation of the CdS shell and subsequent charge separation by the intense local electric field.

1.
P. V.
Kamat
,
J. Phys. Chem. C
112
,
18737
(
2008
).
2.
S.
Rühle
,
M.
Shalom
, and
A.
Zaban
,
ChemPhysChem
11
,
2290
(
2010
).
3.
K.
Ueno
and
H.
Misawa
,
J. Photochem. Photobiol., C
15
,
31
(
2013
).
4.
Y.
Zhong
,
K.
Ueno
,
Y.
Mori
,
X.
Shi
,
T.
Oshikiri
,
K.
Murakoshi
,
H.
Inoue
, and
H.
Misawa
,
Angew. Chem., Int. Ed.
53
,
10350
(
2014
).
5.
R.
Tong
,
C.
Liu
,
Z.
Xu
,
Q.
Kuang
,
Z.
Xie
, and
L.
Zheng
,
ACS Appl. Mater. Interfaces
8
,
21326
(
2016
).
6.
C. X.
Guo
,
J.
Xie
,
H.
Yang
, and
C. M.
Li
,
Adv. Sci.
2
,
1500135
(
2015
).
7.
E. W.
McFarland
and
J.
Tang
,
Nature
421
,
616
(
2003
).
8.
S. K.
Cushing
,
J.
Li
,
F.
Meng
,
T. R.
Senty
,
S.
Suri
,
M.
Li
,
A. D.
Bristow
, and
N.
Wu
,
J. Am. Chem. Soc.
134
,
15033
(
2012
).
9.
X.
Zhang
,
X.
Wu
,
A.
Centeno
,
M.
Ryan
,
N. M.
Alford
,
D. J.
Riley
, and
F.
Xie
,
Sci. Rep.
6
,
23364
(
2016
).
10.
H.
Tada
,
T.
Mitsui
,
T.
Kiyonaga
,
T.
Akita
, and
K.
Tanaka
,
Nat. Mater.
5
,
782
(
2006
).
11.
P.
Mulvaney
,
Langmuir
12
,
788
(
1996
).
12.
Handbook of Chemistry and Physics
, edited by
W. M.
Haynes
 et al (
CRC
,
New York
,
2011
).
13.
V.
Gonzalez-Pedro
,
I.
Zarazua
,
E. M.
Barea
,
F.
Fabregat-Santiago
,
E.
de la Rosa
,
I.
Mora-Sero
, and
S.
Gimenez
,
J. Phys. Chem. C
118
,
891
(
2014
).
14.
M.
Yoshii
,
H.
Kobayashi
, and
H.
Tada
,
ChemPhysChem
16
,
1846
(
2015
).
15.
M.
Fujishima
,
Y.
Nakabayashi
,
K.
Takayama
,
H.
Kobayashi
, and
H.
Tada
,
J. Phys. Chem. C
120
,
17365
(
2016
).
16.
A.
Zaban
,
M.
Greenshtein
, and
J.
Bisquert
,
ChemPhysChem
4
,
859
(
2003
).
17.
N.
Buehler
,
K.
Meier
, and
J. F.
Reber
,
J. Phys. Chem.
88
,
3261
(
1984
).
18.
M.
Grätzel
, in
Energy Resources through Photochemistry and Catalyst
, edited by
M.
Grätzel
(
Academic Press
,
New York
,
1983
).
19.
V.
Nguyen
,
Q.
Cai
, and
C. A.
Grimes
,
J. Colloid Interface Sci.
483
,
287
(
2016
).
20.
Denki Kagaku Binran (The Electrochemical Society of Japan)
(
Maruzen
,
Tokyo
,
2000
).
21.
P. K.
Jain
,
X.
Huang
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
,
Acc. Chem. Res.
41
,
1578
(
2008
).
You do not currently have access to this content.