Metal fluorides typically have a low refractive index and a very high transparency and find many applications in optical and optoelectronic devices. Nearly stoichiometric, high-purity AlF3 films were deposited by atomic layer deposition (ALD) using trimethylaluminum [Al(CH3)3] and SF6 plasma. Self-limiting growth was confirmed and the growth per cycle was determined to range from 1.50 Å to 0.55 Å for deposition temperatures between 50 °C and 300 °C. In addition, the film density of ∼2.8 g cm−3 was found to be relatively close to the bulk value of 3.1 g cm−3. Vacuum ultraviolet spectroscopic ellipsometry measurements over the wavelength range of 140–2275 nm showed a refractive index n of 1.35 at 633 nm, and an extinction coefficient k of <10−4 above 300 nm, for all deposition temperatures. Optical emission spectroscopy during the SF6 plasma exposure step of the ALD cycle revealed the formation of C2H2 and CF2 species, resulting from the interaction of the plasma with the surface after Al(CH3)3 exposure. On the basis of these results, a reaction mechanism is proposed in which F radicals from the SF6 plasma participate in the surface reactions. Overall, this work demonstrates that SF6 plasma is a promising co-reactant for ALD of metal fluorides, providing an alternative to co-reactants such as metal fluorides, HF, or HF-pyridine.

1.
A. S.
Barrière
and
A.
Lachter
,
Appl. Opt.
16
,
2865
(
1977
).
2.
J.
Sun
,
X.
Li
,
W.
Zhang
,
K.
Yi
, and
J.
Shao
,
Appl. Opt.
51
,
8481
(
2012
).
3.
B.-H.
Liao
,
M.-C.
Liu
, and
C.-C.
Lee
,
Appl. Opt.
47
,
C41
(
2008
).
4.
J. D.
Traylor Kruschwitz
and
W. T.
Pawlewicz
,
Appl. Opt.
36
,
2157
(
1997
).
5.
L.
Zhang
,
J.
Zhao
,
P.
Liu
,
T.
Liu
,
Y.
Zhou
,
X.
Yu
, and
X.
Wang
,
J. Lightwave Technol.
33
,
2228
(
2015
).
6.
M.
Muallem
,
A.
Palatnik
,
G. D.
Nessim
, and
Y. R.
Tischler
,
ACS Appl. Mater. Interfaces
7
,
474
(
2015
).
7.
G.
Kedawat
,
S.
Srivastava
,
V. K.
Jain
,
P.
Kumar
,
V.
Kataria
,
Y.
Agrawal
,
B. K.
Gupta
, and
Y. K.
Vijay
,
ACS Appl. Mater. Interfaces
5
,
4872
(
2013
).
8.
J.
Hennessy
,
A. D.
Jewell
,
F.
Greer
,
M. C.
Lee
, and
S.
Nikzad
,
J. Vac. Sci. Technol., A
33
,
01A125
(
2015
).
9.
J.
Hennessy
,
A. D.
Jewell
,
K.
Balasubramanian
, and
S.
Nikzad
,
J. Vac. Sci. Technol., A
34
,
01A120
(
2016
).
10.
Y.
Wan
,
C.
Samundsett
,
J.
Bullock
,
T.
Allen
,
M.
Hettick
,
D.
Yan
,
P.
Zheng
,
X.
Zhang
,
J.
Cui
,
J.
McKeon
,
A.
Javey
, and
A.
Cuevas
,
ACS Appl. Mater. Interfaces
8
,
14671
(
2016
).
11.
S. M.
Sultan
,
K.
Sun
,
O. D.
Clark
,
T. B.
Masaud
,
Q.
Fang
,
R.
Gunn
,
J.
Partridge
,
M. W.
Allen
,
P.
Ashburn
, and
H. M. H.
Chong
,
IEEE Electron Device Lett.
33
,
203
(
2012
).
12.
F.
Ding
,
W.
Xu
,
D.
Choi
,
W.
Wang
,
X.
Li
,
M. H.
Engelhard
,
X.
Chen
,
Z.
Yang
, and
J.-G.
Zhang
,
J. Mater. Chem.
22
,
12745
(
2012
).
13.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
14.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
15.
M.
Mäntymäki
,
J.
Hämäläinen
,
E.
Puukilainen
,
F.
Munnik
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Vap. Deposition
19
,
111
(
2013
).
16.
M.
Mäntymäki
,
M. J.
Heikkilä
,
E.
Puukilainen
,
K.
Mizohata
,
B.
Marchand
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
27
,
604
(
2015
).
17.
T.
Pilvi
,
T.
Hatanpää
,
E.
Puukilainen
,
K.
Arstila
,
M.
Bischoff
,
U.
Kaiser
,
N.
Kaiser
,
M.
Leskelä
, and
M.
Ritala
,
J. Mater. Chem.
17
,
5077
(
2007
).
18.
T.
Pilvi
,
E.
Puukilainen
,
U.
Kreissig
,
M.
Leskelä
, and
M.
Ritala
,
Chem. Mater.
20
,
5023
(
2008
).
19.
T.
Pilvi
,
M.
Ritala
,
M.
Leskelä
,
M.
Bischoff
,
U.
Kaiser
, and
N.
Kaiser
,
Appl. Opt.
47
,
C271
(
2008
).
20.
Y.
Lee
,
J. W.
DuMont
,
A. S.
Cavanagh
, and
S. M.
George
,
J. Phys. Chem. C
119
,
14185
(
2015
).
21.
Y.
Lee
,
H.
Sun
,
M. J.
Young
, and
S. M.
George
,
Chem. Mater.
28
,
2022
(
2016
).
22.
J. W.
DuMont
and
S. M.
George
,
J. Chem. Phys.
146
,
052819
(
2017
).
23.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
29
,
50801
(
2011
).
24.
G.
Kokkoris
,
A.
Panagiotopoulos
,
A.
Goodyear
,
M.
Cooke
, and
E.
Gogolides
,
J. Phys. D: Appl. Phys.
42
,
55209
(
2009
).
25.
M.
Mao
,
Y.
Wang
, and
A.
Bogaerts
,
J. Phys. D: Appl. Phys.
44
,
435202
(
2011
).
26.
S.
Oh
,
H.
Lee
,
C.
Chung
,
S.
Oh
,
H.
Lee
, and
C.
Chung
,
Phys. Plasmas
24
,
13512
(
2017
).
27.
R.
D'Agostino
and
D. L.
Flamm
,
J. Appl. Phys.
52
,
162
(
1981
).
28.
E.
Langereis
,
S. B. S.
Heil
,
H. C. M.
Knoops
,
W.
Keuning
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Phys. D: Appl. Phys.
42
,
73001
(
2009
).
29.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC-Press
,
Boca Raton, FL
,
2007
).
30.
F has an electronegativity and electron affinity of 3.98 and 328 kJ/mol respectively, as compared to 2.58 and 200 kJ/mol for S.
31.
J. N.
Hilfiker
,
C. L.
Bungay
,
R. A.
Synowicki
,
T. E.
Tiwald
,
C. M.
Herzinger
,
B.
Johs
,
G. K.
Pribil
, and
J. A.
Woollam
,
J. Vac. Sci. Technol., A
21
,
1103
(
2003
).
32.
A. J. M.
Mackus
,
S. B. S.
Heil
,
E.
Langereis
,
H. C. M.
Knoops
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
28
,
77
(
2010
).
33.
J. E.
Sansonetti
and
W. C.
Martin
,
J. Phys. Chem. Ref. Data
34
,
1559
(
2005
).
34.
Z. L.
Petrović
,
F.
Tochikubo
,
S.
Kakuta
, and
T.
Makabe
,
J. Appl. Phys.
73
,
2163
(
1993
).
35.
R. W. B.
Gaydon
and
A. G.
Pearse
,
The Identification of Molecular Spectra
(
Chapman & Hall
,
London
,
1950
).
36.
C. B.
Labelle
and
K. K.
Gleason
,
J. Appl. Polym. Sci.
80
,
2084
(
2001
).
37.
S. F.
Durrant
,
R. P.
Mota
, and
M. A.
Bica De Moraes
,
J. Appl. Phys.
71
,
448
(
1992
).
38.
O. V.
Proshina
,
T. V.
Rakhimova
,
D. V.
Lopaev
,
V.
Šamara
,
M. R.
Baklanov
, and
J.-F.
de Marneffe
,
Plasma Sources Sci. Technol.
24
,
55006
(
2015
).
39.
A.
Majumdar
,
F.
Behnke
,
R.
Hippler
,
K.
Matyash
, and
R.
Schneider
,
J. Phys. Chem. A
109
,
9371
(
2005
).

Supplementary Material

You do not currently have access to this content.