Printed electronic components offer certain technological advantages over their silicon based counterparts, like mechanical flexibility, low process temperatures, maskless and additive manufacturing possibilities. However, to be compatible to the fields of smart sensors, Internet of Things, and wearables, it is essential that devices operate at small supply voltages. In printed electronics, mostly silicon dioxide or organic dielectrics with low dielectric constants have been used as gate isolators, which in turn have resulted in high power transistors operable only at tens of volts. Here, we present inkjet printed circuits which are able to operate at supply voltages as low as ≤2 V. Our transistor technology is based on lithographically patterned drive electrodes, the dimensions of which are carefully kept well within the printing resolutions; the oxide semiconductor, the electrolytic insulator and the top-gate electrodes have been inkjet printed. Our inverters show a gain of ∼4 and 2.3 ms propagation delay time at 1 V supply voltage. Subsequently built 3-stage ring oscillators start to oscillate at a supply voltage of only 0.6 V with a frequency of ∼255 Hz and can reach frequencies up to ∼350 Hz at 2 V supply voltage. Furthermore, we have introduced a systematic methodology for characterizing ring oscillators in the printed electronics domain, which has been largely missing. Benefiting from this procedure, we are now able to predict the switching capacitance and driver capability at each stage, as well as the power consumption of our inkjet printed ring oscillators. These achievements will be essential for analyzing the performance and power characteristics of future inkjet printed digital circuits.

1.
L.
Feng
,
W.
Tang
,
J.
Zhao
,
R.
Yang
,
W.
Hu
,
Q.
Li
,
R.
Wang
, and
X.
Guo
,
Sci. Rep.
6
,
20671
(
2016
).
2.
J. S.
Chang
,
A. F.
Facchetti
, and
R.
Reuss
,
IEEE J. Emerging Sel. Top. Circuits Syst.
7
,
7
(
2017
).
3.
M. G.
Mohammed
and
R.
Kramer
,
Adv. Mater.
29
,
1604965
(
2017
).
4.
H.
Klauk
,
U.
Zschieschang
,
J.
Pflaum
, and
M.
Halik
,
Nat. Lett.
445
,
745
(
2007
).
5.
T.
Sekitani
,
U.
Zschieschang
,
H.
Klauk
, and
T.
Someya
,
Nat. Mater.
9
,
1015
(
2010
).
6.
W.
Xiong
,
Y.
Guo
,
U.
Zschieschang
,
H.
Klauk
, and
B.
Murmann
,
IEEE J. Solid-State Circuits
45
,
1380
(
2010
).
7.
I.
Nausieda
,
K. K.
Ryu
,
D. D.
He
,
A. I.
Akinwande
,
V.
Bulovic
, and
C. G.
Sodini
,
IEEE Trans. Electron Devices
58
,
865
(
2011
).
8.
S.
Abdinia
,
F.
Torricelli
,
G.
Maiellaro
,
R.
Coppard
,
A.
Daami
,
S.
Jacob
,
L.
Mariucci
,
G.
Palmisano
,
E.
Ragonese
,
F.
Tramontana
,
A.
van Roermund
, and
E.
Cantatore
,
Org. Electron.
15
,
904
(
2014
).
9.
L.
Feng
,
W.
Tang
,
J.
Zhao
,
Q.
Cui
,
C.
Jiang
, and
X.
Guo
,
IEEE Trans. Electron Devices
61
,
1175
(
2014
).
10.
H.
Fuketa
,
K.
Yoshioka
,
Y.
Shinozuka
,
K.
Ishida
,
T.
Yokota
,
N.
Matsuhisa
,
Y.
Inoue
,
M.
Sekino
,
T.
Sekitani
,
M.
Takamiya
,
T.
Someya
, and
T.
Sakurai
,
IEEE Trans. Biomed. Circuits Syst.
8
,
824
(
2014
).
11.
12.
K.
Hong
,
Y. H.
Kim
,
S. H.
Kim
,
W.
Xie
,
W. D.
Xu
,
C. H.
Kim
, and
C. D.
Frisbie
,
Adv. Mater.
26
,
7032
(
2014
).
13.
W.
Clemens
,
W.
Fix
,
J.
Ficker
,
A.
Knobloch
, and
A.
Ullmann
,
J. Mater. Res.
19
,
1963
1973
(
2004
).
14.
D.
Zielke
,
A. C.
Hübler
,
U.
Hahn
,
N.
Brandt
,
M.
Bartzsch
,
U.
Fügmann
,
T.
Fischer
,
J.
Veres
, and
S.
Ogier
,
Appl. Phys. Lett.
87
,
123508
(
2005
).
15.
A.
Huebler
,
F.
Doetz
,
H.
Kempa
,
H.
Katz
,
M.
Bartzsch
,
N.
Brandt
,
I.
Hennig
,
U.
Fuegmann
,
S.
Vaidyanathan
,
J.
Granstrom
,
S.
Liu
,
A.
Sydorenko
,
T.
Zillger
,
G.
Schmidt
,
K.
Preissler
,
E.
Reichmanis
,
P.
Eckerle
,
F.
Richter
,
T.
Fischer
, and
U.
Hahn
,
Org. Electron.
8
,
480
(
2007
).
16.
Y.
Xia
,
W.
Zhang
,
M.
Ha
,
J. H.
Cho
,
M. J.
Renn
,
C. H.
Kim
, and
C. D.
Frisbie
,
Adv. Funct. Mater.
20
,
587
(
2010
).
17.
P. K.
Nayak
,
M. N.
Hedhili
,
D.
Cha
, and
H. N.
Alshareef
,
Appl. Phys. Lett.
103
,
033518
(
2013
).
18.
S.
Garlapati
,
N.
Mishra
,
S.
Dehm
,
R.
Hahn
,
R.
Kruk
,
H.
Hahn
, and
S.
Dasgupta
,
Appl. Mater. Interfaces
5
(
22
),
11498
(
2013
).
19.
S. H.
Kim
,
K.
Hong
,
W.
Xie
,
K. H.
Lee
,
S.
Zhang
,
T. P.
Lodge
, and
C. D.
Frisbie
,
Adv. Mater.
25
,
1822
(
2013
).
20.
G. C.
Marques
,
S. K.
Garlapati
,
D.
Chatterjee
,
S.
Dehm
,
S.
Dasgupta
,
J.
Aghassi
, and
M. B.
Tahoori
,
IEEE Trans. Electron Devices
64
,
279
(
2017
).
21.
W.
Xie
,
X.
Zhang
,
C.
Leighton
, and
C. D.
Frisbie
,
Adv. Electron. Mater.
3
(3),
1600369
(
2017
).
22.
B.
Nasr
,
D.
Wang
,
R.
Kruk
,
H.
Roesner
,
H.
Hahn
, and
S.
Dasgupta
,
Adv. Funct. Mater.
23
,
1750
(
2013
).
23.
Y.
Taur
and
T. H.
Ning
,
Fundamentals of Modern VLSI Devices
, 2nd ed. (
Cambridge University Press
,
New York, NY, USA
,
2009
).
24.
T. T.
Baby
,
S. K.
Garlapati
,
S.
Dehm
,
M.
Häming
,
R.
Kruk
,
H.
Hahn
, and
S.
Dasgupta
,
ACS Nano
9
(
3
),
3075
(
2015
).
25.
S. K.
Garlapati
,
T. T.
Baby
,
S.
Dehm
,
M.
Hammad
,
V. S. K.
Chakravadhanula
,
R.
Kruk
,
H.
Hahn
, and
S.
Dasgupta
,
Small
11
,
3591
(
2015
).
26.
M.
Bhushan
and
M. B.
Ketchen
,
Microelectronic Test Structures for CMOS Technology
, 1st ed. (
Springer-Verlag
,
New York, NY, USA
,
2011
).
27.
M.
Bhushan
and
M. B.
Ketchen
,
CMOS Test and Evaluation
, 1st ed. (
Springer-Verlag
,
New York, NY, USA
,
2015
).
You do not currently have access to this content.