Mechanical metamaterials exhibit unusual mechanical properties that originate from their topological design. Pentamode metamaterials are particularly interesting because they could be designed to possess any thermodynamically admissible elasticity tensor. In this study, we additively manufacture the metallic pentamode metamaterials from a biocompatible and mechanically strong titanium alloy (Ti-6Al-4V) using an energy distribution method developed for the powder bed fusion techniques. The mechanical properties of the developed materials were a few orders of magnitude higher than those of the similar topologies fabricated previously from polymers. Moreover, the elastic modulus and yield stress of the presented pentamode metamaterials were decoupled from their relative density, meaning that the metallic meta-biomaterials with independently tailored elastic and mass transport (permeability) properties could be designed for tissue regeneration purposes.

1.
J. H.
Lee
,
J. P.
Singer
, and
E. L.
Thomas
, “
Micro-/nanostructured mechanical metamaterials
,”
Adv. Mater.
24
,
4782
4810
(
2012
).
2.
A. A.
Zadpoor
, “
Mechanical meta-materials
,”
Mater. Horiz.
3
,
371
381
(
2016
).
3.
G. W.
Milton
and
A. V.
Cherkaev
, “
Which elasticity tensors are realizable?
,”
J. Eng. Mater. Technol.
117
,
483
493
(
1995
).
4.
C. N.
Layman
,
C. J.
Naify
,
T. P.
Martin
,
D. C.
Calvo
, and
G. J.
Orris
, “
Highly anisotropic elements for acoustic pentamode applications
,”
Phys. Rev. Lett.
111
,
024302
(
2013
).
5.
A. N.
Norris
, “
Acoustic metafluids
,”
J. Acoust. Soc. Am.
125
,
839
849
(
2009
).
6.
M.
Kadic
,
T.
Bückmann
,
R.
Schittny
,
P.
Gumbsch
, and
M.
Wegener
, “
Pentamode metamaterials with independently tailored bulk modulus and mass density
,”
Phys. Rev. Appl.
2
,
054007
(
2014
).
7.
M.
Kadic
,
T.
Bückmann
,
R.
Schittny
, and
M.
Wegener
, “
On anisotropic versions of three-dimensional pentamode metamaterials
,”
New J. Phys.
15
,
023029
(
2013
).
8.
A.
Martin
,
M.
Kadic
,
R.
Schittny
,
T.
Bückmann
, and
M.
Wegener
, “
Phonon band structures of three-dimensional pentamode metamaterials
,”
Phys. Rev. B
86
,
155116
(
2012
).
9.
S.
Amin Yavari
,
S.
Ahmadi
,
R.
Wauthle
,
B.
Pouran
,
J.
Schrooten
,
H.
Weinans
, and
A.
Zadpoor
, “
Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials
,”
J. Mech. Behav. Biomed. Mater.
43
,
91
100
(
2015
).
10.
A. A.
Zadpoor
, “
Bone tissue regeneration: The role of scaffold geometry
,”
Biomater. Sci.
3
,
231
245
(
2015
).
11.
R.
Hedayati
,
M.
Sadighi
,
M.
Mohammadi-Aghdam
, and
A.
Zadpoor
, “
Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells
,”
Appl. Math. Modell.
46
,
408
(
2017
).
12.
M.
Kadic
,
T.
Bückmann
,
N.
Stenger
,
M.
Thiel
, and
M.
Wegener
, “
On the practicability of pentamode mechanical metamaterials
,”
Appl. Phys. Lett.
100
,
191901
(
2012
).
13.
S.
Ahmadi
,
G.
Campoli
,
S.
Amin Yavari
,
B.
Sajadi
,
R.
Wauthlé
,
J.
Schrooten
,
H.
Weinans
, and
A. A.
Zadpoor
, “
Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells
,”
J. Mech. Behav. Biomed. Mater.
34
,
106
115
(
2014
).
14.
A. A.
Zadpoor
and
R.
Hedayati
, “
Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials
,”
J. Biomed. Mater. Res. Part A
104
,
3164
3174
(
2016
).
15.
R.
Hedayati
,
M.
Sadighi
,
M.
Mohammadi-Aghdam
, and
A.
Zadpoor
, “
Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models
,”
Mater. Sci. Eng. C
60
,
163
183
(
2016
).
16.
R.
Hedayati
,
M.
Sadighi
,
M.
Mohammadi-Aghdam
, and
A.
Zadpoor
, “
Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells
,”
Int. J. Mech. Sci.
106
,
19
38
(
2016
).
17.
R.
Hedayati
,
M.
Sadighi
,
M.
Mohammadi-Aghdam
, and
A.
Zadpoor
, “
Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell
,”
J. Mech. Behav. Biomed. Mater.
53
,
272
294
(
2016
).
18.
S.
Van Bael
,
G.
Kerckhofs
,
M.
Moesen
,
G.
Pyka
,
J.
Schrooten
, and
J.-P.
Kruth
, “
Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures
,”
Mater. Sci. Eng. A
528
,
7423
7431
(
2011
).
19.
C.
Yan
,
L.
Hao
,
A.
Hussein
,
P.
Young
, and
D.
Raymont
, “
Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting
,”
Mater. Des.
55
,
533
541
(
2014
).
20.
G. F.
Méjica
and
A. D.
Lantada
, “
Comparative study of potential pentamodal metamaterials inspired by Bravais lattices
,”
Smart Mater. Struct.
22
,
115013
(
2013
).
21.
R.
Schittny
,
T.
Bückmann
,
M.
Kadic
, and
M.
Wegener
, “
Elastic measurements on macroscopic three-dimensional pentamode metamaterials
,”
Appl. Phys. Lett.
103
,
231905
(
2013
).
You do not currently have access to this content.