Using the atom probe tomography, transmission electron microscopy, and ab initio calculations, we investigate the three-dimensional distributions of oxygen atoms segregating at the typical large-angle grain boundaries (GBs) (Σ3{111},Σ9{221},Σ9{114},Σ9{111}/{115}, and Σ27{552}) in Czochralski-grown silicon ingots. Oxygen atoms with a covalent radius that is larger than half of the silicon's radius would segregate at bond-centered positions under tensile stresses above about 2 GPa, so as to attain a more stable bonding network by reducing the local stresses. The number of oxygen atoms segregating in a unit GB area NGB (in atoms/nm2) is hypothesized to be proportional to both the number of the tensilely-stressed positions in a unit boundary area nbc and the average concentration of oxygen atoms around the boundary [Oi] (in at. %) with NGB50nbc[Oi]. This indicates that the probability of oxygen atoms at the segregation positions would be, on average, fifty times larger than in bond-centered positions in defect-free regions.

1.
L.
Chen
,
X.
Yu
,
P.
Chen
,
P.
Wang
,
X.
Gu
,
J.
Lu
, and
D.
Yang
,
Sol. Energy Mater. Sol. Cells
95
,
3148
(
2011
).
2.
J. D.
Murphy
,
R. E.
McGuire
,
K.
Bothe
,
V. V.
Voronkov
, and
R. J.
Falster
,
Sol. Energy Mater. Sol. Cells
120
,
402
(
2014
).
3.
Y.
Ohno
,
K.
Inoue
,
K.
Fujiwara
,
M.
Deura
,
K.
Kutsukake
,
I.
Yonenaga
,
Y.
Shimizu
,
K.
Inoue
,
N.
Ebisawa
, and
Y.
Nagai
,
Appl. Phys. Lett.
106
,
251603
(
2015
).
4.
S. A.
McHugo
,
H.
Hieslmair
, and
E. R.
Weber
,
Appl. Phys. A
64
,
127
(
1997
).
5.
H.
Hieslmair
,
A. A.
Istratov
,
S. A.
McHugo
,
C.
Flink
,
T.
Heiser
, and
E. R.
Weber
,
Appl. Phys. Lett.
72
,
1460
(
1998
).
6.
R.
Falster
and
V.
Voronkov
,
Mater. Sci. Forums
573–574
,
45
60
(
2008
).
7.
M.
Seibt
,
D.
Abdelbarey
,
V.
Kveder
,
C.
Rudolf
,
P.
Saring
,
L.
Stolze
, and
O.
Vos
,
Mater. Sci. Eng. B
159–160
,
264
(
2009
).
8.
T.
Sameshima
,
N.
Miyazaki
,
Y.
Tsuchiya
,
H.
Hashiguchi
,
T.
Tachibana
,
T.
Kojima
,
Y.
Ohshita
,
K.
Arafune
, and
A.
Ogura
,
Appl. Phys. Express
5
,
042301
(
2012
).
9.
D. P.
Fenning
,
A. S.
Zuschlag
,
M. I.
Bertoni
,
B.
Lai
,
G.
Hahn
, and
T.
Buonassisi
,
J. Appl. Phys.
113
,
214504
(
2013
).
10.
T.
Buonassisi
,
A. A.
Istratov
,
S.
Peters
,
C.
Ballif
,
J.
Isenberg
,
S.
Riepe
,
W.
Warta
,
R.
Schindler
,
G.
Willeke
,
Z.
Cai
,
B.
Lai
, and
E. R.
Weber
,
Appl. Phys. Lett.
87
,
121918
(
2005
).
11.
T.
Frolov
,
S. V.
Divinski
,
M.
Asta
, and
Y.
Mishin
,
Phys. Rev. Lett.
110
,
255502
(
2013
).
12.
J. F.
Nie
,
Y. M.
Zhu
,
J. Z.
Liu
, and
X. Y.
Fang
,
Science
340
,
957
(
2013
).
13.
Y.
Ohno
,
K.
Inoue
,
K.
Kutsukake
,
M.
Deura
,
T.
Ohsawa
,
I.
Yonenaga
,
H.
Yoshida
,
S.
Takeda
,
R.
Taniguchi
,
H.
Otubo
,
S. R.
Nishitani
,
N.
Ebisawa
,
Y.
Shimizu
,
H.
Takamizawa
,
K.
Inoue
, and
Y.
Nagai
,
Phys. Rev. B
91
,
235315
(
2015
).
14.
T.
Walther
,
M.
Hopkinson
,
N.
Daneu
,
A.
Recnik
,
Y.
Ohno
,
K.
Inoue
, and
I.
Yonenaga
,
J. Mater. Sci.
49
,
3898
(
2014
).
15.
H.
Akutsu
,
H.
Itokawa
,
K.
Nakamura
,
T.
Iinuma
,
K.
Suguro
,
H.
Uchida
, and
M.
Tada
,
Mater. Res. Soc. Symp. Proc.
1070
,
E02
09
(
2008
).
16.
P. V.
Liddicoat
,
X. Z.
Liao
,
Y. H.
Zhao
,
Y. T.
Zhu
,
M. Y.
Murashkin
,
E. J.
Lavernia
,
R. Z.
Valiev
, and
S. P.
Ringer
,
Nat. Commun.
1
,
63
(
2010
).
17.
Y.
Ohno
,
K.
Inoue
,
Y.
Tokumoto
,
K.
Kutsukake
,
I.
Yonenaga
,
N.
Ebisawa
,
H.
Takamizawa
,
Y.
Shimizu
,
K.
Inoue
,
Y.
Nagai
,
H.
Yoshida
, and
S.
Takeda
,
Appl. Phys. Lett.
103
,
102102
(
2013
).
18.
M.
Herbig
,
D.
Raabe
,
Y. J.
Li
,
P.
Choi
,
S.
Zaefferer
, and
S.
Goto
,
Phys. Rev. Lett.
112
,
126103
(
2014
).
19.
Y.
Ohno
,
K.
Kutsukake
,
M.
Deura
,
I.
Yonenaga
,
Y.
Shimizu
,
N.
Ebisawa
,
K.
Inoue
,
Y.
Nagai
,
H.
Yoshida
, and
S.
Takeda
,
Appl. Phys. Lett.
109
,
142105
(
2016
).
20.
P.
Kashammer
and
T.
Sinno
,
J. Appl. Phys.
118
,
095301
(
2015
).
21.
Y.
Shimizu
,
Y.
Kawamura
,
M.
Uematsu
,
M.
Tomita
,
T.
Kinno
,
N.
Okada
,
M.
Kato
,
H.
Uchida
,
M.
Takahashi
,
H.
Ito
,
H.
Ishikawa
,
Y.
Ohji
,
H.
Takamizawa
, and
Y.
Nagai
,
J. Appl. Phys.
109
,
036102
(
2011
).
22.
T.
Buonassisi
,
A. A.
Istratov
,
M. D.
Pickett
,
M. A.
Marcus
,
T. F.
Ciszec
, and
E. R.
Weber
,
Appl. Phys. Lett.
89
,
042102
(
2006
).
23.
Y.
Ohno
,
T.
Taishi
,
Y.
Tokumoto
, and
I.
Yonenaga
,
J. Appl. Phys.
108
,
073514
(
2010
).
24.
G.
Sarau
,
S.
Christiansen
,
M.
Holla
, and
W.
Seifert
,
Sol. Energy Mater. Sol. Cells.
95
,
2264
(
2011
).
25.

The background concentration estimated with an APT concentration profile was higher than [Oi], since a small amount of oxygen atoms would be occasionally introduced during FIB processes.

26.
A.
Garg
,
W. A. T.
Clark
, and
J. P.
Hirth
,
Philos. Mag. A
59
,
479
(
1989
).
27.
M.
Kohyama
,
Modell. Simul. Mater. Sci. Eng.
10
,
R31
(
2002
).
28.
A.
Stoffers
,
O. C.
-Miredin
,
W.
Seifert
,
S.
Zaefferer
,
S.
Riepe
, and
D.
Raabe
,
Prog. Photovolt: Res. Appl.
23
,
1742
(
2015
).
29.
T. A.
Arias
and
J. D.
Joannopoulos
,
Phys. Rev. B
49
,
4525
(
1994
).
30.
Y.
Yamamoto
,
K.
Togase
,
Y.
Ohno
,
I.
Yonenaga
, and
S. R.
Nishitani
,
Jpn. J. Appl. Phys.
53
,
061302
(
2014
).
31.
P.
Kashammer
and
T.
Sinno
,
J. Appl. Phys.
114
,
083505
(
2013
).
32.
R.
Bullough
and
R. C.
Newman
, in
Progress in Semiconductors
, Vol. 7, edited by
A. F.
Gibbons
and
R. E.
Burgers
(
Heywood
,
London
,
1963
), p.
100
.
33.
J. A.
Van Vechten
and
J. C.
Phillips
,
Phys. Rev. B
2
,
2160
(
1970
).
34.
S.
Ishibashi
,
T.
Tamura
,
S.
Tanaka
,
M.
Kohyama
, and
K.
Terakura
,
Phys. Rev. B
76
,
153310
(
2007
).
35.
Y.
Shiihara
,
M.
Kohyama
, and
S.
Ishibashi
,
Phys. Rev. B
81
,
075441
(
2010
).
36.
H.
Wang
,
M.
Kohyama
,
S.
Tanaka
, and
Y.
Shiihara
,
J. Phys.: Condens. Matter
25
,
305006
(
2013
).
37.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
38.
K.
Kutsukake
,
H.
Ise
,
Y.
Tokumoto
,
Y.
Ohno
, and
I.
Yonenaga
,
J. Cryst. Growth
352
,
173
(
2012
).
You do not currently have access to this content.