We report the design, fabrication, and characterization of a resonant Lorentz force magnetic field sensor based on dual-coupled photonic crystal nanobeam cavities. Compared with microelectromechanical systems (MEMS) Lorentz force magnetometers, the proposed magnetic field sensor has an ultra-small footprint (less than 70 μm × 40 μm) and a wider operation bandwidth (of 160 Hz). The sensing mechanism is based on the resonance wavelength shift of a selected supermode of the coupled cavities, which is caused by the Lorentz force-induced relative displacement of the cavity nanobeams, and thus the optical transmission variation. The sensitivity and resolution of the device demonstrated experimentally are 22.9 mV/T and 48.1 μT/Hz1/2, respectively. The results can be further improved by optimizing the initial offset of the two nanobeams.

1.
J.
Lenz
and
S.
Edelstein
,
IEEE Sens. J.
6
(
3
),
631
649
(
2006
).
2.
P.
Josephs-Franks
,
L.
Hao
,
A.
Tzalenchuk
,
J.
Davies
,
O.
Kazakova
,
J. C.
Gallop
,
L.
Brown
, and
J. C.
Macfarlane
,
Supercond. Sci. Technol.
16
(
12
),
1570
1574
(
2003
).
3.
A. E.
Mahdi
,
L.
Panina
, and
D.
Mapps
,
Sens. Actuators, A
105
(
3
),
271
285
(
2003
).
4.
S. A.
Macintyre
,
Sens. Rev.
11
(
2
),
7
11
(
1991
).
5.
A. L.
Herrera-May
,
L. A.
Aguilera-Cortes
,
P. J.
Garcia-Ramirez
, and
E.
Manjarrez
,
Sensors
9
(
10
),
7785
7813
(
2009
).
6.
J. E.
Lenz
,
Proc. IEEE
78
(
6
),
973
989
(
1990
).
7.
J. W.
Judy
,
Smart Mater. Struct.
10
(
6
),
1115
(
2001
).
8.
F.
Keplinger
,
S.
Kvasnica
,
H.
Hauser
, and
R.
Grossinger
,
IEEE Trans. Magn.
39
(
5
),
3304
3306
(
2003
).
9.
F.
Keplinger
,
S.
Kvasnica
,
A.
Jachimowicz
,
F.
Kohl
,
J.
Steurer
, and
H.
Hauser
,
Sens. Actuators, A
110
(
1–3
),
112
118
(
2004
).
10.
A. L.
Herrera-May
,
L. A.
Aguilera-Cortés
,
L.
García-Gonzalez
, and
E.
Figueras-Costa
,
Microsyst. Technol.
15
(
2
),
259
268
(
2009
).
11.
V.
Beroulle
,
Y.
Bertrand
,
L.
Latorre
, and
P.
Nouet
,
Sens. Actuators, A
103
(
1–2
),
23
32
(
2003
).
12.
R.
Sunier
,
T.
Vancura
,
Y.
Li
,
K.-U.
Kirstein
,
H.
Baltes
, and
O.
Brand
,
J. Microelectromech. Syst.
15
(
5
),
1098
1107
(
2006
).
13.
A. L.
Herrera-May
,
P. J.
García-Ramírez
,
L. A.
Aguilera-Cortés
,
J.
Martínez-Castillo
,
A.
Sauceda-Carvajal
,
L.
García-González
, and
E.
Figueras-Costa
,
J. Micromech. Microeng.
19
(
1
),
015016
(
2009
).
14.
Z.
Kádár
,
A.
Bossche
,
P. M.
Sarro
, and
J. R.
Mollinger
,
Sens. Actuators, A
70
(
3
),
225
232
(
1998
).
15.
H.
Emmerich
and
M.
Schofthaler
,
IEEE Trans. Electron Devices
47
(
5
),
972
977
(
2000
).
16.
B.
Bahreyni
and
C.
Shafai
,
IEEE Sens. J.
7
(
9
),
1326
1334
(
2007
).
17.
M.
Li
,
E. J.
Ng
,
V. A.
Hong
,
C. H.
Ahn
,
Y.
Yang
,
T. W.
Kenny
, and
D. A.
Horsley
,
Appl. Phys. Lett.
103
(
17
),
173504
(
2013
).
18.
V. T.
Rouf
,
M.
Li
, and
D. A.
Horsley
,
IEEE Sens. J.
13
(
11
),
4474
4481
(
2013
).
19.
M.
Bagherinia
,
M.
Bruggi
,
A.
Corigliano
,
S.
Mariani
,
D. A.
Horsley
,
M.
Li
, and
E.
Lasalandra
,
J. Microelectromech. Syst.
24
(
4
),
887
895
(
2015
).
20.
W.
Zhang
and
J. E. Y.
Lee
,
Sens. Actuators, A
211
,
145
152
(
2014
).
21.
M.
Li
,
S.
Sonmezoglu
, and
D. A.
Horsley
,
J. Microelectromech. Syst.
24
(
2
),
333
342
(
2015
).
22.
M.
Li
,
S.
Nitzan
, and
D. A.
Horsley
,
IEEE Electron Device Lett.
36
(
1
),
62
64
(
2015
).
23.
S.
Sonmezoglu
,
M.
Li
, and
D. A.
Horsley
,
Appl. Phys. Lett.
106
(
9
),
093504
(
2015
).
24.
S.
Sonmezoglu
and
D. A.
Horsley
,
J. Microelectromech. Syst.
PP
(
99
),
1
10
(
2016
).
25.
K. L.
Ekinci
and
M. L.
Roukes
,
Rev. Sci. Instrum.
76
(
6
),
061101
(
2005
).
26.
H. G.
Craighead
,
Science
290
(
5496
),
1532
1535
(
2000
).
27.
Y.
Shen
and
P. N.
Prasad
,
Appl. Phys. B
74
(
7–8
),
641
645
(
2002
).
28.
Y.
Shen
,
C. S.
Friend
,
Y.
Jiang
,
D.
Jakubczyk
,
J.
Swiatkiewicz
, and
P. N.
Prasad
,
J. Phys. Chem. B
104
(
32
),
7577
7587
(
2000
).
30.
A. G.
Krause
,
M.
Winger
,
T. D.
Blasius
,
Q.
Lin
, and
O.
Painter
,
Nat. Photonics
6
(
11
),
768
772
(
2012
).
31.
M.
Wu
,
N. L.
Wu
,
T.
Firdous
,
F.
Fani Sani
,
J. E.
Losby
,
M. R.
Freeman
, and
P. E.
Barclay
,
Nat. Nanotechnol.
12
,
127
(
2017
).
32.
C.
Yu
,
J.
Janousek
,
E.
Sheridan
,
D. L.
McAuslan
,
H.
Rubinsztein-Dunlop
,
P. K.
Lam
,
Y.
Zhang
, and
W. P.
Bowen
,
Phys. Rev. Appl.
5
(
4
),
044007
(
2016
).
33.
S.
Forstner
,
S.
Prams
,
J.
Knittel
,
E. D.
van Ooijen
,
J. D.
Swaim
,
G. I.
Harris
,
A.
Szorkovszky
,
W. P.
Bowen
, and
H.
Rubinsztein-Dunlop
,
Phys. Rev. Lett.
108
(
12
),
120801
(
2012
).
34.
P. B.
Deotare
,
M. W.
McCutcheon
,
I. W.
Frank
,
M.
Khan
, and
M.
Lončar
,
Appl. Phys. Lett.
94
(
12
),
121106
(
2009
).
35.
Q. M.
Quan
,
P. B.
Deotare
, and
M.
Loncar
,
Appl. Phys. Lett.
96
(
20
),
203102
(
2010
).
36.
Q. M.
Quan
and
M.
Loncar
,
Opt. Express
19
(
19
),
18529
18542
(
2011
).
37.
F.
Tian
,
G. Y.
Zhou
,
F. S.
Chau
,
J.
Deng
, and
R.
Akkipeddi
,
Appl. Phys. Lett.
102
(
8
),
081101
(
2013
).
38.
F.
Tian
,
G. Y.
Zhou
,
Y.
Du
,
F. S.
Chau
,
J.
Deng
, and
R.
Akkipeddi
,
Opt. Lett.
38
(
12
),
2005
2007
(
2013
).
39.
H.
Du
,
X.
Zhang
,
G.
Chen
,
J.
Deng
,
F. S.
Chau
, and
G.
Zhou
,
Sci. Rep.
6
,
24766
(
2016
).
40.
H.
Du
,
F.
Chau
, and
G.
Zhou
,
Micromachines
7
(
4
),
69
(
2016
).
41.
C.
Hu
,
M.
Li
,
S.
Song
,
W. A.
Yang
,
R.
Zhang
, and
M. Q.-H.
Meng
,
IEEE Sens. J.
10
(
5
),
903
913
(
2010
).
42.
V.
Schlageter
,
P.-A.
Besse
,
R. S.
Popovic
, and
P.
Kucera
,
Sens. Actuators, A
92
(
1–3
),
37
42
(
2001
).
You do not currently have access to this content.