We report the study of piezoelectric direct torsion actuation mechanism using lead-free piezoelectric d36 in-plane shear-mode BZT-BCT single crystals. The generated angle of twist of the piezoelectric torsion actuator was obtained from the transverse deflection measurement using a laser vibrometer. The bi-morph torsional actuator, consisting of two lead-free piezoelectric BZT-BCT in-plane shear-mode single crystals with a giant piezoelectric d36 shear strain coefficient of 1590 pC/N, provided a rate of twist of 34.12 mm/m under a quasi-static 15 V drive. The experimental benchmark was further modelled and verified by the ANSYS software using three dimensional (3D) piezoelectric finite elements. The experimental results revealed that lead-free piezoelectric BZT-BCT d36-mode single crystal is a superior candidate for piezoelectric torsion actuation. This lead-free piezoelectric BZT-BCT d36-mode torsion actuator can be effectively applied in torsional deformation control by taking into account the environmental considerations.

1.
J.
Rodel
,
W.
Jo
,
K. T. P.
Seifert
,
E.-M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
2.
S.
Priya
and
S.
Nahm
,
Lead-Free Piezoelectrics
(
Springer
,
New York
,
2014
).
3.
T. R.
Shrout
and
S. J.
Zhang
,
J. Electroceram.
19
,
185
(
2007
).
4.
W.
Liu
and
X.
Ren
,
Phys. Rev. Lett.
103
,
257602
(
2009
).
5.
D.
Xue
,
Y.
Zhou
,
H.
Bao
,
C.
Zhou
, and
J.
Gao
,
J. Appl. Phys.
109
,
054110
(
2011
).
6.
P.
Berik
and
A.
Benjeddou
,
Int. J. Smart Nano Mater.
1
,
224
(
2010
).
8.
C.
Zehetner
and
M.
Krommer
,
Struct. Control. Health
19
,
574
(
2012
).
9.
M.
Krommer
and
C.
Zehetner
,
Mech. Adv. Mater. Struct.
22
,
19
(
2015
).
10.
A.
Butz
,
S.
Klinkel
, and
W.
Wagner
,
Int. J. Numer. Methods Eng.
76
,
601
(
2008
).
11.
P.
Berik
,
A.
Benjeddou
, and
M.
Krommer
,
Smart. Struct. Syst.
12
,
483
(
2013
).
12.
M.
Krommer
,
P.
Berik
, and
A.
Benjeddou
,
Acta Mech.
224
,
2505
(
2013
).
13.
C.
Zehetner
,
M.
Zellhofer
,
M.
Krommer
, and
A.
Brandl
, in
Proceedings of the 7th International Conference on Computational Mechanics for Spatial Structures, Sarajevo, Bosnia-Herzegovina, 2–4 April 2012
(
2012
), pp.
395
403
.
14.
S.
Zhang
,
W.
Jiang
,
R. J.
Meyer
,
F.
Li
,
J.
Luo
, and
W.
Cao
,
J. Appl. Phys.
110
,
064106
(
2011
).
15.
S.
Zhang
,
F.
Li
,
W.
Jiang
,
J.
Luo
,
R. J.
Meyer
,
W.
Cao
, and
T.
Shrout
,
Appl. Phys. Lett.
98
,
182903
(
2011
).
16.
IRE Standards on Piezoelectric Crystals
,
Proc. IRE
46
,
764
(
1958
).
17.
K.
Kim
, “
Novel Shear Mode Piezoelectric Sensors and Their Applications
,” PhD dissertation,
North Carolina State University
,
2013
, p.
103
.
18.
Zhang
,
S.
,
F.
Li
,
X.
Jiang
,
J.
Kim
,
J.
Luo
, and
X.
Geng
,
Prog. Mater. Sci.
68
,
1
(
2015
).
19.
K.
Kim
,
S.
Zhang
, and
X.
Jiang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
,
2548
(
2012
).
20.
K.
Kim
,
S.
Zhang
, and
X.
Jiang
,
Appl. Phys. Lett.
100
,
253501
(
2012
).
21.
W.
Yan
,
P.
Han
, and
Z.
Jiang
,
J. Appl. Phys.
111
,
034107
(
2012
).
22.
V. S.
Puli
,
D. K.
Pradhan
,
D. B.
Chrisey
,
M.
Tomozawa
,
G. L.
Sharma
,
J. F.
Scott
, and
R. S.
Katiyar
,
Mater. Sci.
48
,
2151
(
2013
).
23.
R. J.
Wood
,
E.
Steltz
, and
R. S.
Fearing
, in
IEEE International Conference on Robotics and Automation
, Barcelona (
2005
).
24.
S.
Li
,
W.
Jiang
,
L.
Zheng
, and
W.
Cao
,
Appl. Phys. Lett.
102
,
183512
(
2013
).
25.
P.
Berik
,
D.
Maurya
,
P.
Kumar
,
M. G.
Kang
, and
S.
Priya
,
Sci. Technol. Adv. Mater.
18
,
57
(
2017
).
26.
M.
Hagiwara
,
T.
Hoshina
,
H.
Takeda
, and
T.
Tsurumi
,
Jpn. J. Appl. Phys.
49
,
09MD04
(
2010
).
27.
H.
Beige
and
G.
Schmidt
,
Ferroelectrics
41
,
39
(
1982
).
28.
S. K.
Parashar
,
A.
DasGupta
,
U.
Wagner
, and
P.
Hagedorn
,
Int. J. Nonlinear Mech.
40
,
429
(
2005
).
29.
S. K.
Parashar
,
A.
DasGupta
, and
P.
Hagedorn
,
Proc. SPIE
5383
,
71
81
(
2004
).
30.
S. K.
Parashar
,
U.
Von Wagner
, and
P.
Hagedorn
,
Nonlinear Dyn.
37
,
181
(
2004
).
31.
A.
Benjeddou
,
Mech. Adv. Mater. Struct.
14
,
263
(
2007
).
You do not currently have access to this content.