Photoconduction (PC) properties in the ZnO films with the (110) nonpolar surface (a-plane) epitaxially grown by chemical vapor deposition on the LiGaO2 (010) substrates with low lattice mismatches (4.0% along the c-axis and 3.8% along the m-axis) have been studied. The structural and optical qualities of the epitaxial films have been characterized using theta-two theta and phi scans, X-ray diffraction, rocking curve, and photoluminescence measurements. The nonpolar ZnO film exhibits a near visible-blind ultraviolet photoresponse. The optimal photocurrent to dark current ratio (i.e., sensitivity) can reach 13360%. The responsivity of the a-plane ZnO photoconductor-type detector can also reach 17 AW−1, which is two to four orders of magnitude higher than those of the m-plane, a-plane, and r-plane photodiodes based on ZnO/ZnMgO quantum wells. The normalized gain at 2.9 cm2V−1 of the nonpolar film is also comparable with the optimal recorded value of the ZnO nanowires. In addition, the PC mechanism has also been investigated by the power-dependent and time-resolved photoconductivity measurements. The power-sensitive responsivity can be attributed to the effect of light intensity on carrier lifetime and quantum efficiency. The photovoltaic effect of the surface depletion region is inferred to be the reason resulting in the anomalous power-dependent quantum efficiency.

1.
U.
Ozgur
,
Ya. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Dogan
,
V.
Avrutin
,
S. J.
Cho
, and
H.
Morkoc
,
J. Appl. Phys.
98
,
041301
(
2005
).
2.
C.
Klingshirn
,
Phys. Status Solidi B
244
,
3027
(
2007
).
3.
S. J.
Pearton
and
F.
Ren
,
Int. Mater. Rev.
59
,
61
(
2014
).
4.
K.
Liu
,
M.
Sakurai
, and
M.
Aono
,
Sensors
10
,
8604
(
2010
).
5.
E.
Monroy
,
F.
Omnes
, and
F.
Calle
,
Semicond. Sci. Technol.
18
,
R33
(
2003
).
6.
L.
Schmidt-Mende
and
J. L.
MacManus-Driscoll
,
Mater. Today
10
,
40
(
2007
).
7.
D. C.
Look
and
B.
Claflin
,
Phys. Status Solidi B
241
,
624
(
2004
).
8.
P.
Waltereit
,
O.
Brandt
,
A.
Trampert
,
H. T.
Grahn
,
J.
Menniger
,
M.
Ramsteiner
,
M.
Reiche
, and
K. H.
Ploog
,
Nature
406
,
865
(
2000
).
9.
M. M. C.
Chou
,
L.
Chang
,
H. Y.
Chung
,
T. H.
Huang
,
J. J.
Wu
, and
C. W.
Chen
,
J. Cryst. Growth
308
,
412
(
2007
).
10.
M. M. C.
Chou
,
D. R.
Hang
,
C.
Chen
, and
Y. H.
Liao
,
Thin Solid Films
519
,
3627
(
2011
).
11.
C. Y.
Lee
,
C.
Chen
,
L.
Chang
, and
M. M. C.
Chou
,
J. Cryst. Growth
407
,
11
(
2014
).
12.
Y. M.
Chen
,
T. H.
Huang
,
T.
Yan
,
L.
Chang
,
M. M. C.
Chou
,
K. H.
Ploog
, and
C. M.
Chiang
,
J. Cryst. Growth
377
,
82
(
2013
).
13.
S. K.
Han
,
S. K.
Hong
,
J. W.
Lee
,
J. G.
Kim
,
M.
Jeong
,
J. Y.
Lee
,
S. I.
Hong
,
J. S.
Park
,
Y. E.
Ihm
,
J. S.
Ha
, and
T.
Yao
,
Thin Solid Films
519
,
6394
(
2011
).
14.
K. W.
Kim
,
H. S.
Son
,
N. J.
Choi
,
J.
Kim
, and
S. N.
Lee
,
Thin Solid Films
546
,
114
(
2013
).
15.
B. H.
Lin
,
W. R.
Liu
,
C. Y.
Lin
,
S. T.
Hsu
,
S.
Yang
,
C. C.
Kuo
,
C. H.
Hsu
,
W. F.
Hsieh
,
F. S. S.
Chien
, and
C. S.
Chang
,
ACS Appl. Mater. Interfaces
4
,
5333
(
2012
).
16.
N.
Yu
,
D.
Dong
,
Y.
Qi
,
Y.
Wu
, and
L.
Chen
,
J. Electron. Mater.
45
,
1073
(
2016
).
17.
G.
Tabares
,
A.
Hierro
,
B.
Vinter
, and
J. M.
Chauveau
,
Appl. Phys. Lett.
99
,
071108
(
2011
).
18.
C. L.
Chen
,
T.
Yan
,
S. H.
Yu
,
C. Y.
Lee
,
C. W.
Chang
, and
M. M. C.
Chou
,
RSC Adv.
5
,
35405
(
2015
).
19.
H.
Matsui
and
H.
Tabata
,
Appl. Phys. Lett.
94
,
161907
(
2009
).
20.
Y.
Yan
,
G. M.
Dalpian
,
M. M.
Al-Jassim
, and
S. H.
Wei
,
Phys. Rev. B
70
,
193206
(
2004
).
21.
S.
Yang
,
H. C.
Hsu
,
W. R.
Liu
,
B. H.
Lin
,
C. C.
Kuo
,
C. H.
Hsu
,
M. O.
Eriksson
,
P. O.
Holtz
, and
W. F.
Hsieh
,
Appl. Phys. Lett.
105
,
011106
(
2014
).
22.
P.
Bhattacharya
,
Semiconductor Optoelectronic Devices
(
Prentice-Hall Inc.
,
New Jersey
,
1997
), Chap.
8
, p.
346
.
23.
G.
Tabares
,
A.
Hierro
,
M.
Lopez-Ponce
,
E.
Munoz
,
B.
Vinter
, and
J. M.
Chauveau
,
Appl. Phys. Lett.
106
,
061114
(
2015
).
24.
K. S.
Stevens
,
M.
Kinniburgh
, and
R.
Beresford
,
Appl. Phys. Lett.
66
,
3518
(
1995
).
25.
F.
Binet
,
J. Y.
Duboz
,
E.
Rosencher
,
F.
Scholz
, and
V.
Harle
,
Appl. Phys. Lett.
69
,
1202
(
1996
).
26.
R. H.
Bube
,
Photoelectronic Properties of Semiconductors
(
Cambridge University Press
,
New York
,
1992
), Chapter
2
, pp.
28
30
.
27.
J. D.
Prades
,
R.
Jimenez-Diaz
,
F.
Hernandez-Ramirez
,
L.
Fernandez-Romero
,
T.
Andreu
,
A.
Cirera
,
A.
Romano-Rodriguez
,
A.
Cornet
,
J. R.
Morante
,
S.
Barth
, and
S.
Mathur
,
J. Phys. Chem. C
112
,
14639
(
2008
).
28.
C.
Fabrega
,
F.
Hernandez-Ramirez
,
J. D.
Prades
,
R.
Jimenez-Diaz
,
T.
Andreu
, and
J. R.
Morante
,
Nanotechnology
21
,
445703
(
2010
).
29.
R. S.
Chen
,
C. A.
Chen
,
H. Y.
Tsai
,
W. C.
Wang
, and
Y. S.
Huang
,
J. Phys. Chem. C
116
,
4267
(
2012
).
30.
R. S.
Chen
,
W. C.
Wang
,
C. H.
Chan
,
M. L.
Lu
,
Y. F.
Chen
,
H. C.
Lin
,
K. H.
Chen
, and
L. C.
Chen
,
Appl. Phys. Lett.
103
,
223107
(
2013
).
31.
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D. P. R.
Aplin
,
J.
Park
,
X. Y.
Bao
,
Y. H.
Lo
, and
D.
Wang
,
Nano Lett.
7
,
1003
(
2007
).
32.
R. S.
Chen
,
W. C.
Wang
,
M. L.
Lu
,
Y. F.
Chen
,
H. C.
Lin
,
K. H.
Chen
, and
L. C.
Chen
,
Nanoscale
5
,
6867
(
2013
).
You do not currently have access to this content.