The less-invasive non-embedded cell cutting or slicing technique provides opportunities for a bio-study at subcellular scale, but there are few effective solutions available at the current stage. This paper reports a robot-aided vibrating system for less-invasive non-embedded cell cutting and investigates the role of key vibrating parameters in the cell cutting process. First, a nanoknife with sharp angle 5° is fabricated from a commercial atomic force microscope cantilever by focused ion beam etching and a vibrating system is constructed from a piezo actuator. Then, they are integrated with a self-developed nanorobotic manipulation system inside an environment scanning electron microscope. After that, we choose yeast cells as the sample to implement the vibrating cutting and investigate the effect of vibrating parameters (frequency and amplitude) on cell cutting quality. The results clearly indicate that the vibrating nanoknife is able to reduce the cutting force and improve the cutting quality. It is also suggested that the repeated load-unload (impact) cycle is the main reason for the better performance of vibrating cutting. The effect of vibrating parameters at small scale benefits our fundamental understanding on cell mechanics, and this research paves a way for the low-destructive non-embedded cell cutting and promotes the practical cell cutting techniques.

1.
J. H.
Lee
,
E. R.
Daugharthy
,
J.
Scheiman
,
R.
Kalhor
,
J. L.
Yang
,
T. C.
Ferrante
,
R.
Terry
,
S. S. F.
Jeanty
,
C.
Li
,
R.
Amamoto
,
D. T.
Peters
,
B. M.
Turczyk
,
A. H.
Marblestone
,
S. A.
Inverso
,
A.
Bernard
,
P.
Mali
,
X.
Rios
,
J.
Aach
, and
G. M.
Church
,
Science
343
,
1360
(
2014
).
2.
E.
Hebert-Chatelain
,
T.
Desprez
,
R.
Serrat
,
L.
Bellocchio
,
E.
Soria-Gomez
,
A.
Busquets-Garcia
,
A. C. P.
Zottola
,
A.
Delamarre
,
A.
Cannich
,
P.
Vincent
,
M.
Varilh
,
L. M.
Robin
,
G.
Terral
,
M. D.
García-Fernández
,
M.
Colavita
,
W.
Mazier
,
F.
Drago
,
N.
Puente
,
L.
Reguero
,
I.
Elezgarai
,
J.-W.
Dupuy
,
D.
Cota
,
M.-L.
Lopez-Rodriguez
,
G.
Barreda-Gómez
,
F.
Massa
,
P.
Grandes
,
G.
Bénard
, and
G.
Marsicano
,
Nature
539
,
555
(
2016
).
3.
T.
Mikuni
,
J.
Nishiyama
,
Y.
Sun
,
N.
Kamasawa
, and
R.
Yasuda
,
Cell
165
,
1803
(
2016
).
4.
S.-H.
Yoon
,
C.
Lee
, and
M. R. K.
Mofrad
,
Appl. Phys. Lett.
98
,
133701
(
2011
).
5.
M.
Arango-Lievano
,
C.
Peguet
,
M.
Catteau
,
M.-L.
Parmentier
,
S.
Wu
,
M. V.
Chao
,
S. D.
Ginsberg
, and
F.
Jeanneteau
,
Sci. Rep.
6
,
37231
(
2016
).
6.
W. C.
Chang
,
E. A.
Hawkes
,
M.
Kliot
, and
D. W.
Sretavan
,
Neurosurgery
61
,
683
(
2007
).
7.
L.
Hu
,
J.
Wang
,
X.
Zhou
,
Z.
Xiong
,
J.
Zhao
,
R.
Yu
,
F.
Huang
,
H.
Zhang
, and
L.
Chen
,
Sci. Rep.
6
,
32993
(
2016
).
8.
J. E.
Reiner
,
R. B.
Kishore
,
B. C.
Levin
,
T.
Albanetti
,
N.
Boire
,
A.
Knipe
,
K.
Helmerson
, and
K. H.
Deckman
,
PLoS One
5
,
e14359
(
2010
).
9.
N.
Xi
,
C. K. M.
Fung
,
R.
Yang
,
K.
Seiffert-Sinha
,
K. W. C.
Lai
, and
A. A.
Sinha
,
IEEE Nanotechnol. Mag.
4
,
9
(
2010
).
10.
X.
Wei
,
Q.
Chen
,
Y.
Liu
, and
L.
Peng
,
Nanotechnology
18
,
185503
(
2007
).
11.
G.
Singh
,
P.
Rice
,
R. L.
Mahajan
, and
J. R.
McIntosh
,
Nanotechnology
20
,
095701
(
2009
).
12.
W.
Shang
,
H.
Lu
,
W.
Wan
,
T.
Fukuda
, and
Y.
Shen
,
Sci. Rep.
6
,
22534
(
2016
).
13.
Y.
Shen
,
M.
Nakajima
,
Z.
Yang
,
S.
Kojima
,
M.
Homma
, and
T.
Fukuda
,
Nanotechnology
22
,
305701
(
2011
).
16.
L.
Liu
,
W.
Jia
,
D.
Xu
, and
R.
Li
,
J. Food Process. Preserv.
39
,
1762
(
2015
).
17.
E. J.
Davies
,
M.
Dong
,
M.
Gutekunst
,
K.
Närhi
,
H. J. A. A.
van Zoggel
,
S.
Blom
,
A.
Nagaraj
,
T.
Metsalu
,
E.
Oswald
,
S.
Erkens-Schulze
,
J. A. D. S.
Martin
,
R.
Turkki
,
S. R.
Wedge
,
T. M.
Af Hällström
,
J.
Schueler
,
W. M.
van Weerden
,
E. W.
Verschuren
,
S. T.
Barry
,
H.
van der Kuip
, and
J. A.
Hickman
,
Sci. Rep.
5
,
17187
(
2015
).
18.
C.
Kang
,
Y.
Qiao
,
G.
Li
,
K.
Baechle
,
P.
Camelliti
,
S.
Rentschler
, and
I. R.
Efimov
,
Sci. Rep.
6
,
28798
(
2016
).
19.
S. A.
Golden
,
M.
Heshmati
,
M.
Flanigan
,
D. J.
Christoffel
,
K.
Guise
,
M. L.
Pfau
,
H.
Aleyasin
,
C.
Menard
,
H.
Zhang
,
G. E.
Hodes
,
D.
Bregman
,
L.
Khibnik
,
J.
Tai
,
N.
Rebusi
,
B.
Krawitz
,
D.
Chaudhury
,
J. J.
Walsh
,
M.-H.
Han
,
M. L.
Shapiro
, and
S. J.
Russo
,
Nature
534
,
688
692
(
2016
).
20.
D.
Studer
and
H.
Gnaegi
,
J. Microsc.
197
,
94
(
2000
).
21.
A.
Al-Amoudi
,
J.
Dubochet
,
H.
Gnaegi
,
W.
Lüthi
, and
D.
Studer
,
J. Microsc.
212
,
26
(
2003
).
22.
H.
Jeong
,
T.
Li
,
Y. B.
Gianchandani
, and
J.
Park
, in
MEMS
(
2014
), p.
885
.
23.
F.
Arai
,
T.
Amano
,
T.
Fukuda
, and
H.
Satoh
, in
MHS
(
2000
), p.
195
.
24.
Y.
Shen
,
M.
Nakajima
,
Z.
Yang
,
H.
Tajima
,
Z.
Najdovski
,
M.
Homma
, and
T.
Fukuda
,
Nanotechnology
24
,
145703
(
2013
).
25.
F. M.
Klis
,
A.
Boorsma
, and
P. W. J. D.
Groot
,
Yeast
23
,
185
(
2006
).
26.
J. D.
Stenson
,
C. R.
Thomas
, and
P.
Hartley
,
Chem. Eng. Sci.
64
,
1892
(
2009
).
27.
J. D.
Stenson
,
P.
Hartley
,
C.
Wang
, and
C. R.
Thomas
,
Biotechnol. Prog.
27
,
505
(
2011
).
28.
A.
Suchodolskis
,
V.
Feiza
,
A.
Stirke
,
A.
Timonina
,
A.
Ramanaviciene
, and
A.
Ramanavicius
,
Surf. Interface Anal.
43
,
1636
(
2011
).
You do not currently have access to this content.