The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

1.
Y.
Zhang
,
K.
Shibata
,
N.
Nagai
,
C.
Ndebeka-Bandou
,
G.
Bastard
, and
K.
Hirakawa
,
Appl. Phys. Lett.
107
,
103103
(
2015
).
2.
K.
Peng
,
P.
Parkinson
,
L.
Fu
,
Q.
Gao
,
N.
Jiang
,
Y.
Guo
,
F.
Wang
,
H. J.
Joyce
,
J. L.
Boland
,
H. H.
Tan
,
C.
Jagadish
, and
M. B.
Johnston
,
Nano Lett.
15
,
206
(
2015
).
3.
M. S.
Vitiello
,
D.
Coquillat
,
L.
Viti
,
D.
Ercolani
,
F.
Teppe
,
A.
Pitanti
,
F.
Beltram
,
L.
Sorba
,
W.
Knap
, and
A.
Tredicucci
,
Nano Lett.
12
,
96
(
2012
).
4.
M.
Mittendorff
,
S.
Winnerl
,
J.
Kamann
,
J.
Eroms
,
D.
Weiss
,
H.
Schneider
, and
M.
Helm
,
Appl. Phys. Lett.
103
,
021113
(
2013
).
5.
X.
Cai
,
A. B.
Sushkov
,
M. M.
Jadidi
,
L. O.
Nyakiti
,
R. L.
Myers-Ward
,
D. K.
Gaskill
,
T. E.
Murphy
,
M. S.
Fuhrer
, and
H. D.
Drew
,
Nano Lett.
15
,
4295
(
2015
).
6.
L.
Viti
,
D.
Coquillat
,
A.
Politano
,
K. A.
Kokh
,
Z. S.
Aliev
,
M. B.
Babanly
,
O. E.
Tereshchenko
,
W.
Knap
,
E. V.
Chulkov
, and
M. S.
Vitiello
,
Nano Lett.
16
,
80
(
2016
).
7.
M.
Jarrahi
,
IEEE Trans. Terahertz Sci. Technol.
5
,
391
(
2015
).
8.
O.
Mitrofanov
,
I.
Brener
,
T. S.
Luk
, and
J. L.
Reno
,
ACS Photonics
2
,
1763
(
2015
).
9.
C. W.
Berry
,
N.
Wang
,
M. R.
Hashemi
,
M.
Unlu
, and
M.
Jarrahi
,
Nat. Commun.
4
,
1622
(
2013
).
10.
J.
Požela
and
A.
Reklaitis
,
Solid-State. Electron.
23
,
927
(
1980
).
11.
S.
Kono
,
M.
Tani
,
P.
Gu
, and
K.
Sakai
,
Appl. Phys. Lett.
77
,
4104
(
2000
).
12.
C. W.
Berry
,
M. R.
Hashemi
, and
M.
Jarrahi
,
Appl. Phys. Lett.
104
,
081122
(
2014
).
13.
B.
Heshmat
,
H.
Pahlevaninezhad
,
Y.
Pang
,
M.
Masnadi-Shirazi
,
R. B.
Lewis
,
T.
Tiedje
,
R.
Gordon
, and
T. E.
Darcie
,
Nano Lett.
12
,
6255
(
2012
).
14.
S.
Matsuura
,
M.
Tani
, and
K.
Sakai
,
Appl. Phys. Lett.
70
,
559
(
1997
).
15.
K.
Moon
,
I.-M.
Lee
,
J.-H.
Shin
,
E. S.
Lee
,
N.
Kim
,
W.-H.
Lee
,
H.
Ko
,
S.-P.
Han
, and
K. H.
Park
,
Sci. Rep.
5
,
13817
(
2015
).
16.
Q. Y. S.
Wu
,
H.
Tanoto
,
L.
Ding
,
C.
Choy Chum
,
B.
Wang
,
A. B.
Chew
,
A.
Banas
,
K.
Banas
,
S.
Jin Chua
, and
J.
Teng
,
Nanotechnology
26
,
255201
(
2015
).
17.
J. L.
Briscoe
and
S.-Y.
Cho
,
Electron. Lett.
50
,
1860
(
2014
).
18.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
,
205
(
2010
).
19.
S. J.
Kim
,
I.
Thomann
,
J.
Park
,
J. H.
Kang
,
A. P.
Vasudev
, and
M. L.
Brongersma
,
Nano Lett.
14
,
1446
(
2014
).
20.
C.
Simovski
,
D.
Morits
,
P.
Voroshilov
,
M.
Guzhva
,
P.
Belov
, and
Y.
Kivshar
,
Opt. Express
21
,
A714
(
2013
).
21.
S.
Collin
,
F.
Pardo
, and
J.-L.
Pelouard
,
Appl. Phys. Lett.
83
,
1521
(
2003
).
22.
A. J.
Macfaden
,
J. L.
Reno
,
I.
Brener
, and
O.
Mitrofanov
,
Appl. Phys. Lett.
104
,
011110
(
2014
).
23.
The MBE growth was performed with a single Al cell.
24.
See http://www.lumerical.com/tcad-products/fdtd/ for Lumerical Solutions, Inc.
25.
J. N.
Munday
and
H. A.
Atwater
,
Nano Lett.
11
,
2195
(
2011
).
26.
Y.
Ra'di
,
C. R.
Simovski
, and
S. A.
Tretyakov
,
Phys. Rev. Appl.
3
,
037001
(
2015
).
27.
J.
Hao
,
J.
Wang
,
X.
Liu
,
W. J.
Padilla
,
L.
Zhou
, and
M.
Qiu
,
Appl. Phys. Lett.
96
,
251104
(
2010
).
28.

Supplementary Material

You do not currently have access to this content.