We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in a vacuum through thermophoretic force in the presence of a strong temperature gradient. Typical sizes of the trapped particles are between 10 μm and 1 mm at a pressure between 1 and 10 Torr. The trapping stability is provided radially by the increasing temperature field and vertically by the transition from the free molecule to hydrodynamic behavior of thermophoresis as the particles ascend. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment.

1.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
,
Science
269
,
198
(
1995
).
2.
K. B.
Davis
,
M. O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
,
Phys. Rev. Lett.
75
,
3969
(
1995
).
3.
R. V.
Krems
,
Phys. Chem. Chem. Phys.
10
,
4079
(
2008
).
4.
D.
Kielpinski
,
C.
Monroe
, and
D. J.
Wineland
,
Nature
417
,
709
(
2002
).
5.
A.
Ashkin
and
J. M.
Dziedzic
,
Appl. Phys. Lett.
19
,
283
(
1971
).
6.
C.
Mund
and
R.
Zellner
,
ChemPhysChem
4
,
630
(
2003
).
7.
S.
Kheifets
,
A.
Simha
,
K.
Melin
,
T.
Li
, and
M. G.
Raizen
,
Science
343
,
1493
(
2014
).
8.
A.
Ashkin
and
J. M.
Dziedzic
,
Science
187
,
1073
(
1975
).
9.
M.
Berry
and
A.
Geim
,
Eur. J. Phys.
18
,
307
(
1997
).
10.
Y.
Ikezoe
,
N.
Hirota
,
J.
Nakagawa
, and
K.
Kitazawa
,
Nature
393
,
749
(
1998
).
11.
V.
Dhariwal
,
P. G.
Hall
, and
A. K.
Ray
,
J. Aerosol Sci.
24
,
197
(
1993
).
12.
T.
Kelling
and
G.
Wurm
,
Phys. Rev. Lett.
103
,
215502
(
2009
).
13.
M.
Knudsen
,
Ann. Phys.
336
,
205
(
1909
).
14.
T.
Kelling
,
G.
Wurm
, and
C.
Duermann
,
Rev. Sci. Instrum.
82
,
115105
(
2011
).
15.
J.
van Eymeren
and
G.
Wurm
,
Mon. Not. R. Astron. Soc.
420
,
183
(
2012
).
16.
F.
Zheng
,
Adv. Colloid Interface Sci.
97
,
255
(
2002
).
17.
K.
Kadoya
,
N.
Matsunaga
, and
A.
Nagashima
,
J. Phys. Chem. Ref. Data
14
,
947
(
1985
).
18.
S.
Takata
,
K.
Aoki
, and
Y.
Sone
,
Progress in Astronautics and Aeronautics, Vol. 159, Rarefied Gas Dynamics: Theory and Simulations
(
AIAA
,
New York
,
1994
), p.
626
639
.
19.
K.
Yamamoto
and
Y.
Ishihara
,
Phys. Fluids
31
,
3618
(
1988
).
20.
L.
Talbot
,
R. K.
Cheng
,
R. W.
Schefer
, and
D. R.
Willis
,
J. Fluid Mech.
101
,
737
(
1980
).
21.
H.
Rohatschek
,
J. Aerosol Sci.
26
,
717
(
1995
).
22.
N.
Eckerskorn
,
R.
Bowman
,
R. A.
Kirian
,
S.
Awel
,
M.
Wiedorn
,
J.
Küpper
,
M. J.
Padgett
,
H. N.
Chapman
, and
A. V.
Rode
,
Phys. Rev. Appl.
4
,
064001
(
2015
).
23.
E.
Golshtein
and
T.
Elperin
,
J. Thermophys. Heat Transfer
10
,
250
(
1996
).
24.
S.
Stefanov
,
V.
Roussinov
, and
C.
Cercignani
,
Phys. Fluids
14
,
2255
(
2002
).
You do not currently have access to this content.