Acoustically stimulated charge transport in solids was studied using the scanning electron microscopy method (SEM). The surface acoustic wave on the surface of the YZ-cut of a LiNbO3 crystal was visualized by registration of low-energy secondary electrons in SEM, and the charge distribution on the crystal surface was visualized using the electron beam induced current method. To register the induced current, an interdigital transducer structure was formed from graphene on the crystal surface. It was shown that the charge distribution on the crystal surface corresponds to the distribution of the acoustic wave field on the crystal surface.

1.
C.
Rocke
,
S.
Zimmermann
,
A.
Wixforth
,
J. P.
Kptthaus
,
G.
Böhm
, and
G.
Weimann
,
Phys. Rev. Lett.
78
,
4099
(
1997
).
2.
P. D.
Batista
,
R.
Hey
, and
P. V.
Santos
,
Appl. Phys. Lett.
92
,
262108
(
2008
).
3.
S. J.
Jiao
,
P. D.
Batista
,
K.
Biermann
,
R.
Hey
, and
P. V.
Santos
,
J. Appl. Phys.
106
,
053708
(
2009
).
4.
V. M.
Yakovenko
,
Physica B
407
,
1969
(
2012
).
5.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
6.
M. I.
Katsnelson
and
K. S.
Novoselov
,
Solid State Commun.
143
,
3
(
2007
).
7.
V.
Miseikis
,
J. E.
Cunningham
,
K.
Saeed
,
R.
O'Rorke
, and
A. G.
Davies
,
Appl. Phys. Lett.
100
,
133105
(
2012
).
8.
O. A. C.
Nunes
,
J. Appl. Phys.
115
,
233715
(
2014
).
9.
S.
Zheng
,
H.
Zhang
,
Z.
Feng
,
Y.
Yu
,
R.
Zhang
,
C.
Sun
,
J.
Liu
,
X.
Duan
,
W.
Pang
, and
D.
Zhang
,
Appl. Phys. Lett.
109
,
183110
(
2016
).
10.
P. V.
Santos
,
T.
Schumann
,
M. H.
Oliveira
, Jr.
,
J. M. J.
Lopes
, and
H.
Riechert
,
Appl. Phys. Lett.
102
,
221907
(
2013
).
11.
T.
Poole
,
L.
Banedhu
, and
G. R.
Nash
,
Appl. Phys. Lett.
106
,
133107
(
2015
).
12.
Y.
Chen
,
H.
Zhang
,
H.
Zhang
,
Z.
Fang
,
H.
Zhao
,
C.
Sun
,
S.
Zheng
,
W.
Pang
, and
D.
Zhang
,
Appl. Phys. Lett.
108
,
033107
(
2016
).
13.
D.
Roshchupkin
,
L.
Ortega
,
I.
Zizak
,
O.
Plotitcyna
,
V.
Matveev
,
O.
Kononenko
,
E.
Emelin
,
A.
Erko
,
K.
Tynyshtykbayev
,
D.
Irzhak
, and
Z.
Insepov
,
J. Appl. Phys.
118
,
104901
(
2015
).
14.
Z.
Insepov
,
E.
Emelin
,
O.
Kononenko
,
D. V.
Roshchupkin
,
K. B.
Tynyshtykbayev
, and
K. A.
Baigarin
,
Appl. Phys. Lett.
106
,
023505
(
2015
).
15.
W. J.
Tanski
and
D.
Wittels
,
Appl. Phys. Lett.
34
,
537
(
1979
).
16.
G.
Eberharter
and
H. P.
Feuerbaum
,
Appl. Phys. Lett.
37
,
698
(
1980
).
17.
H.
Bahadur
and
R.
Parshad
,
Scanning Electron Microsc.
1
,
509
(
1980
).
18.
D. V.
Roshchupkin
and
M.
Brunel
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
41
,
512
(
1994
).
19.
D. V.
Roshchupkin
,
M.
Brunel
,
R.
Tucoulou
,
E.
Bigler
, and
N. G.
Sorokin
,
Appl. Phys. Lett.
64
,
164
(
1994
).
20.
H. J.
Leamy
,
J. Appl. Phys.
53
,
R51
(
1982
).
21.
O. V.
Kononenko
,
V. N.
Matveev
,
D. P.
Field
,
D. V.
Matveev
,
S. I.
Bozhko
,
D. V.
Roshchupkin
,
E. E.
Vdovin
, and
A. N.
Baranov
,
Nanosyst.: Phys., Chem., Math.
5
(
1
),
117
(
2014
).
22.
G. H.
Buh
,
H. J.
Chung
, and
Y.
Kuk
,
Appl. Phys. Lett.
79
,
2010
(
2001
).
23.
N. S.
Malvankar
,
S. E.
Yalcin
,
M. T.
Tuominen
, and
D. R.
Lovley
,
Nat. Nanotechnol.
9
,
1012
1017
(
2014
).
You do not currently have access to this content.