Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.

1.
B.
Eliasson
,
M.
Hirth
, and
U.
Kogelschatz
,
J. Phys. D: Appl. Phys.
20
,
1421
(
1987
).
2.
V. I.
Gibalov
and
G. J.
Pietsch
,
J. Phys. D: Appl. Phys.
33
,
2618
(
2000
).
3.
S.
Roy
and
K. P.
Singh
,
Appl. Phys. Lett.
88
,
121501
(
2006
).
4.
N. N.
Misra
,
T.
Moiseev
,
S.
Patil
,
S. K.
Pankaj
,
P.
Bourke
,
J. P.
Mosnier
,
K. M.
Keener
, and
P. J.
Cullen
,
Food Bioprocess Technol.
7
,
3045
(
2014
).
5.
N. N.
Misra
,
C.
Sullivan
,
S. K.
Pankaj
,
L.
Alvarez-Jubete
,
R.
Cama
,
F.
Jacoby
, and
P. J.
Cullen
,
Innovative Food Sci. Emerging Technol.
26
,
456
(
2014
).
6.
D.
Pavliňák
,
O.
Galmiz
,
M.
Zemánek
,
A.
Brablec
,
J.
Čech
, and
M.
Černák
,
Appl. Phys. Lett.
105
,
154102
(
2014
).
7.
R.
Matthes
,
C.
Bender
,
R.
Schlüter
,
I.
Koban
,
R.
Bussiahn
,
S.
Reuter
,
J.
Lademann
,
K.-D.
Weltmann
, and
A.
Kramer
,
PLoS One
8
(
7
),
e70462
(
2013
).
8.
C.
Smet
,
E.
Noriega
,
F.
Rosier
,
J. L.
Walsh
,
V. P.
Valdramidis
, and
J. F.
Van Impe
,
Innovative Food Sci. Emerging Technol.
38
,
393
406
(
2016
).
9.
W. H.
Tay
,
S. S.
Kausik
,
C. S.
Wong
,
S. L.
Yap
, and
S. V.
Muniandy
,
Phys. Plasmas
21
,
113502
(
2014
).
10.
Y.
Sakiyama
,
D. B.
Graves
,
H.-W.
Chang
,
T.
Shimizu
, and
G. E.
Morfill
,
J. Phys. D: Appl. Phys.
45
,
425201
(
2012
).
11.
M. I.
Hasan
and
J. L.
Walsh
,
Appl. Phys. Lett.
110
,
134102
(
2017
).
12.
M. I.
Hasan
and
J. L.
Walsh
,
J. Appl. Phys.
119
,
203302
(
2016
).
13.
Y.
Ni
,
M. J.
Lynch
,
M.
Modic
,
R. D.
Whalley
, and
J. L.
Walsh
,
J. Phys. D: Appl. Phys.
49
,
355203
(
2016
).
14.
J.-J.
Wang
,
K.-S.
Choi
,
L.-H.
Feng
,
T. N.
Jukes
, and
R. D.
Whalley
,
Prog. Aerosp. Sci.
62
,
52
(
2013
).
15.
D. X.
Liu
,
Z. C.
Liu
,
C.
Chen
,
A. J.
Yang
,
D.
Li
,
M. Z.
Rong
,
H. L.
Chen
, and
M. G.
Kong
,
Sci. Rep.
6
,
23737
(
2016
).
16.
M.
Modic
,
N. P.
McLeod
,
J. M.
Sutton
, and
J. L.
Walsh
,
Int. J. Antimicrob. Agents
49
,
375
(
2017
).
17.
M. G.
Kong
,
G.
Kroesen
,
G.
Morfill
,
T.
Nosenko
,
T.
Shimizu
,
J.
van Dijk
, and
J. L.
Zimmermann
,
New J. Phys.
11
,
115012
(
2009
).
You do not currently have access to this content.