We explore the capability of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) to study nanoscale Si(100) device layers in silicon-on-insulators (SOIs). These device layers are a macroscopic 2D silicon sheet, and understanding the effective coupling of charge in and out of this sheet allows the determination of whether it is possible to accurately measure the electronic properties of the sheet. Specifically, we examine how the spreading resistance is manifested following the processing of SOI device layers with various doping levels. Depending on the doping level, ultra-thin SOI can exhibit significant blue shifts of the peaks in the tunneling and field emission spectra. By comparing these peak shifts with the film resistivity, it is possible to estimate the contribution of the spreading resistance in STM and STS. We show that STM can be used to study the effective n-type dopant concentrations in the 1013–1016 cm−3 range. Furthermore, we demonstrate that with a sufficiently high doping level, 5 nm thick SOI device-layers can be measured and exhibit bulk like electronic characteristics.

1.
P.
Zhang
,
E.
Tevaarwerk
,
B. N.
Park
,
D. E.
Savage
,
G. K.
Celler
,
I.
Knezevic
,
P. G.
Evans
,
M. A.
Eriksson
, and
M. G.
Lagally
,
Nature
439
(
7077
),
703
(
2006
).
2.
K. C.
Lin
,
O. W.
Holland
,
L. C.
Feldman
, and
H. H.
Weitering
,
Appl. Phys. Lett.
72
(
18
),
2313
(
1998
).
3.
P.
Sutter
,
W.
Ernst
, and
E.
Sutter
,
Appl. Phys. Lett.
85
(
15
),
3148
(
2004
).
4.
M. B.
Johnson
and
J. M.
Halbout
,
J. Vac. Sci. Technol., B
10
(
1
),
508
(
1992
).
5.
R. G.
Mazur
and
D. H.
Dickey
,
J. Electrochem. Soc.
113
(
3
),
255
(
1966
).
6.
R. M.
Feenstra
and
J. A.
Stroscio
,
J. Vac. Sci. Technol., B
5
(
4
),
923
(
1987
).
7.
R.
Maboudian
,
K.
Pond
,
V.
Bressler-Hill
,
M.
Wassermeier
,
P. M.
Petroff
,
G. A. D.
Briggs
, and
W. H.
Weinberg
,
Surf. Sci.
275
(
1
),
L662
(
1992
).
8.
N. D.
Jäger
,
P.
Ebert
,
K.
Urban
,
R.
Krause-Rehberg
, and
E. R.
Weber
,
Phys. Rev. B
65
(
19
),
195318
(
2002
).
9.
M.
McEllistrem
,
G.
Haase
,
D.
Chen
, and
R. J.
Hamers
,
Phys. Rev. Lett.
70
(
16
),
2471
(
1993
).
10.
F.
Giannazzo
,
F.
Roccaforte
, and
V.
Raineri
,
Appl. Phys. Lett.
91
(
20
),
202104
(
2007
);
P.
Eyben
,
M.
Xu
,
N.
Duhayon
,
T.
Clarysse
,
S.
Callewaert
, and
W.
Vandervorst
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom.
20
(
1
),
471
(
2002
);
E.
Latu-Romain
,
P.
Gilet
,
N.
Chevalier
,
D.
Mariolle
,
F.
Bertin
,
G.
Feuillet
,
G.
Perillat-Merceroz
,
P.
Ferret
,
F.
Levy
,
P.
Muret
, and
A.
Chelnokov
,
J. Appl. Phys.
107
(
12
),
124307
(
2010
).
11.
D.
Álvarez
,
J.
Hartwich
,
J.
Kretz
,
M.
Fouchier
, and
W.
Vandervorst
,
Microelectron. Eng.
67–68
,
945
(
2003
).
12.
F.
Giannazzo
,
V.
Raineri
,
S.
Mirabella
,
G.
Impellizzeri
, and
F.
Priolo
,
Appl. Phys. Lett.
88
(
4
),
043117
(
2006
);
L.
Wang
,
V.
Sallet
,
C.
Sartel
, and
G.
Brémond
,
Appl. Phys. Lett.
109
(
9
),
092101
(
2016
);
G.
Bremond
,
L.
Wang
,
J.-M.
Chauveau
,
C.
Sartel
, and
V.
Sallet
, in
Proceedings of the European Microscopy Congress 2016
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2016
);
F.
Giannazzo
,
V.
Raineri
,
S.
Mirabella
,
G.
Impellizzeri
, and
F.
Priolo
,
Microelectron. Eng.
84
(
3
),
446
(
2007
).
13.
A.
Schulze
,
R.
Cao
,
P.
Eyben
,
T.
Hantschel
, and
W.
Vandervorst
,
Ultramicroscopy
161
,
59
(
2016
);
[PubMed]
K.
Mylvaganam
,
L. C.
Zhang
,
P.
Eyben
,
J.
Mody
, and
W.
Vandervorst
,
Nanotechnology
20
(
30
),
305705
(
2009
).
[PubMed]
14.
P. S. N.
Barimar
,
C. M.
Doyle
,
B.
Naydenov
, and
J. J.
Boland
,
J. Vac. Sci. Technol., B
34
(
4
),
041806
(
2016
).
15.
B.
Naydenov
and
J. J.
Boland
,
Phys. Rev. B
82
(
24
),
245411
(
2010
).
16.
R. S.
Becker
,
J. A.
Golovchenko
, and
B. S.
Swartzentruber
,
Phys. Rev. Lett.
55
(
9
),
987
(
1985
);
[PubMed]
G.
Binnig
,
K. H.
Frank
,
H.
Fuchs
,
N.
Garcia
,
B.
Reihl
,
H.
Rohrer
,
F.
Salvan
, and
A. R.
Williams
,
Phys. Rev. Lett.
55
(
9
),
991
(
1985
).
[PubMed]
17.
J. A.
Appelbaum
,
G. A.
Baraff
, and
D. R.
Hamann
,
Phys. Rev. B
14
(
2
),
588
(
1976
);
J.
Pollmann
,
P.
Krüger
, and
A.
Mazur
,
J. Vac. Sci. Technol., B
5
(
4
),
945
(
1987
);
J. A.
Kubby
and
J. J.
Boland
,
Surf. Sci. Rep.
26
(
3
),
61
(
1996
).
18.
T.
Jung
,
Y. W.
Mo
, and
F. J.
Himpsel
,
Phys. Rev. Lett.
74
(
9
),
1641
(
1995
);
[PubMed]
C. L.
Lin
,
S. M.
Lu
,
W. B.
Su
,
H. T.
Shih
,
B. F.
Wu
,
Y. D.
Yao
,
C. S.
Chang
, and
T. T.
Tsong
,
Phys. Rev. Lett.
99
(
21
),
216103
(
2007
);
[PubMed]
H.-C.
Ploigt
,
C.
Brun
,
M.
Pivetta
,
F.
Patthey
, and
W.-D.
Schneider
,
Phys. Rev. B
76
(
19
),
195404
(
2007
);
P.
Ruffieux
,
K.
Ait-Mansour
,
A.
Bendounan
,
R.
Fasel
,
L.
Patthey
,
P.
Groning
, and
O.
Groning
,
Phys. Rev. Lett.
102
(
8
),
086807
(
2009
).
[PubMed]
19.
W. J.
Kaiser
,
L. D.
Bell
,
M. H.
Hecht
, and
F. J.
Grunthaner
,
J. Vac. Sci. Technol., A
6
(
2
),
519
(
1988
);
M.
Weimer
,
J.
Kramar
, and
J. D.
Baldeschwieler
,
Phys. Rev. B
39
(
8
),
5572
(
1989
).
20.
N. D.
Jäger
,
E. R.
Weber
,
K.
Urban
, and
P.
Ebert
,
Phys. Rev. B
67
(
16
),
165327
(
2003
).
21.
F. J.
Himpsel
and
T.
Fauster
,
J. Vac. Sci. Technol., A
2
(
2
),
815
(
1984
).
22.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
23.
C.
Ndoye
,
T.
Liu
, and
M.
Orlowski
,
ECS Trans.
33
(
31
),
3
(
2011
).

Supplementary Material

You do not currently have access to this content.