We generalize the concept of perfect optical vortices, studying the elliptic perfect optical vortices (EPOVs), which also have diameters independent of the topological charge. A phase-only diffractive optical element is proposed for the efficient generation of such EPOV. The intensity of the EPOV generated by this element is higher than that of the EPOV generated approximately by an elliptical axicon. We obtain exact analytical expressions for the orbital angular momentum (OAM) density and for the total OAM of the EPOV. These expressions show that the normalized OAM of the EPOV is fractional and it exceeds the OAM of the conventional circular perfect optical vortex, which equals the topological charge. It allows continuous controlling of the OAM by changing the ellipticity. We show analytically that the OAM density is maximal on the smaller side of the EPOV. The ratio of the maximal to the minimal OAM density equals the squared ratio of the ellipse dimensions. Using the proposed element, EPOVs that carry different topological charges are generated experimentally with the aid of a spatial light modulator. We experimentally confirm the independence of their size from the topological charge, which is determined interferometrically. Such EPOVs can be used for moving microscopic particles along an ellipse with acceleration, as well as for the generation of OAM-entangled photons.

1.
A.
Ostrovsky
,
C.
Rickenstorff-Parrao
, and
V.
Arrizón
, “
Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator
,”
Opt. Lett.
38
,
534
536
(
2013
).
2.
M.
Chen
,
M.
Mazilu
,
Y.
Arita
,
E.
Wright
, and
K.
Dholakia
, “
Dynamics of microparticles trapped in a perfect vortex beam
,”
Opt. Lett.
38
,
4919
4922
(
2013
).
3.
J.
García-García
,
C.
Rickenstorff-Parrao
,
R.
Ramos-García
,
V.
Arrizón
, and
A.
Ostrovsky
, “
Simple technique for generating the perfect optical vortex
,”
Opt. Lett.
39
,
5305
5308
(
2014
).
4.
P.
Vaity
and
L.
Rusch
, “
Perfect vortex beam: Fourier transformation of a Bessel beam
,”
Opt. Lett.
40
,
597
600
(
2015
).
5.
Y.
Chen
,
Z.
Fang
,
Y.
Ren
,
L.
Gong
, and
R.
Lu
, “
Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device
,”
Appl. Opt.
54
,
8030
8035
(
2015
).
6.
M. V.
Jabir
,
N.
Apurv Chaitanya
,
A.
Aadhi
, and
G. K.
Samanta
, “
Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons
,”
Sci. Rep.
6
,
21877
(
2016
).
7.
S. G.
Reddy
,
P.
Chithrabhanu
,
P.
Vaity
,
A.
Aadhi
,
S.
Prabhakar
, and
R. P.
Singh
, “
Non-diffracting speckles of a perfect vortex beam
,”
J. Opt.
18
(
5
),
055602
(
2016
).
8.
C.
Zhang
,
C.
Min
,
L.
Du
, and
X.-C.
Yuan
, “
Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging
,”
Appl. Phys. Lett.
108
(
20
),
201601
(
2016
).
9.
L.
Sun
,
Y.
Zhang
,
Y.
Wang
,
C.
Zhang
,
C.
Min
,
Y.
Yang
,
S.
Zhu
, and
X.
Yuan
, “
Refractive index mapping of single cells with a graphene-based optical sensor
,”
Sens. Actuators B
242
,
41
46
(
2017
).
10.
H.
Ma
,
X.
Li
,
Y.
Tai
,
H.
Li
,
J.
Wang
,
M.
Tang
,
Y.
Wang
,
J.
Tang
, and
Z.
Nie
, “
In situ measurement of the topological charge of a perfect vortex using the phase shift method
,”
Opt. Lett.
42
,
135
138
(
2017
).
11.
P.
Li
,
Y.
Zhang
,
S.
Liu
,
C.
Ma
,
L.
Han
,
H.
Cheng
, and
J.
Zhao
, “
Generation of perfect vectorial vortex beams
,”
Opt. Lett.
41
,
2205
2208
(
2016
).
12.
V. V.
Kotlyar
,
A. A.
Kovalev
, and
A. P.
Porfirev
, “
Optimal phase element for generating a perfect optical vortex
,”
J. Opt. Soc. Am. A
33
,
2376
2384
(
2016
).
13.
S.
Chávez-Cerda
,
J.
Gutiérrez-Vega
, and
G.
New
, “
Elliptic vortices of electromagnetic wave fields
,”
Opt. Lett.
26
,
1803
1805
(
2001
).
14.
F.
Ye
,
L.
Dong
,
B.
Malomed
,
D.
Mihalache
, and
B.
Hu
, “
Elliptic vortices in optical waveguides and self-attractive Bose-Einstein condensates
,”
J. Opt. Soc. Am. B
27
,
757
762
(
2010
).
15.
T.
Fadeyeva
,
C.
Alexeyev
,
B.
Sokolenko
,
M.
Kudryavtseva
, and
A.
Volyar
, “
Non-canonical propagation of high-order elliptic vortex beams in a uniaxially anisotropic medium
,”
Ukr. J. Phys. Opt.
12
(
2
),
62
82
(
2011
).
16.
F.
Ye
,
D.
Mihalache
, and
B.
Hu
, “
Elliptic vortices in composite Mathieu lattices
,”
Phys. Rev. A
79
(
5
),
053852
(
2009
).
17.
A.
Kumar
,
P.
Vaity
, and
R.
Singh
, “
Crafting the core asymmetry to lift the degeneracy of optical vortices
,”
Opt. Express
19
,
6182
6190
(
2011
).
18.
M.
Dennis
, “
Rows of optical vortices from elliptically perturbing a high-order beam
,”
Opt. Lett.
31
,
1325
1327
(
2006
).
19.
V.
Kotlyar
,
S.
Khonina
,
A.
Almazov
,
V.
Soifer
,
K.
Jefimovs
, and
J.
Turunen
, “
Elliptic Laguerre-Gaussian beams
,”
J. Opt. Soc. Am. A
23
,
43
56
(
2006
).
20.
V.
Kotlyar
,
A.
Kovalev
, and
A.
Porfirev
, “
Vortex Hermite-Gaussian laser beams
,”
Opt. Lett.
40
,
701
704
(
2015
).
21.
H.
Tao
,
Y.
Liu
,
Z.
Chen
, and
J.
Pu
, “
Measuring the topological charge of vortex beams by using an annular ellipse aperture
,”
Appl. Phys. B
106
,
927
932
(
2012
).
22.
R.
Chakraborty
and
A.
Ghosh
, “
Generation of an elliptic Bessel beam
,”
Opt. Lett.
31
,
38
40
(
2006
).
23.
R.
Chakraborty
and
A.
Ghosh
, “
Generation of an elliptic hollow beam using Mathieu and Bessel functions
,”
J. Opt. Soc. Am. A
23
,
2278
2282
(
2006
).
24.
J.
Miret
and
C.
Zapata-Rodríguez
, “
Diffraction-free beams with elliptic Bessel envelope in periodic media
,”
J. Opt. Soc. Am. B
25
,
1
6
(
2008
).
25.
J.
Jin
,
J.
Luo
,
X.
Zhang
,
H.
Gao
,
X.
Li
,
M.
Pu
,
P.
Gao
,
Z.
Zhao
, and
X.
Luo
, “
Generation and detection of orbital angular momentum via metasurface
,”
Sci. Rep.
6
,
24286
(
2016
).
You do not currently have access to this content.