Magnetic memory cells associated with the stress-mediated magnetoelectric effect promise extremely low bit-writing energies. Most investigations have focused on the process of writing information in memory cells, and very few on readout schemes. The usual assumption is that the readout will be achieved using magnetoresistive structures such as Giant Magneto-Resistive stacks or Magnetic Tunnel Junctions. Since the writing energy is very low in the magnetoelectric systems, the readout energy using magnetoresistive approaches becomes non negligible. Incidentally, the magneto-electric interaction itself contains the potentiality of the readout of the information encoded in the magnetic subsystem. In this letter, the principle of magnetoelectric readout of the information by an electric field in a composite multiferroic heterostructure is considered theoretically and demonstrated experimentally using [ N × ( TbCo 2 / FeCo ) ] / [ Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 ] ( 1 x ) [ PbTiO 3 ] x stress-mediated ME heterostructures.

1.
ITRS
, http://www.itrs.net/Links/2013ITRS/2013Chapters/2013ERD.pdf for “
Emerging research devices
,”
Technical Report
, The International Technology Roadmap for Semiconductors,
2013
.
2.
A.
Chen
, “
Extended papers selected from ESSDERC 2015
,”
Solid-State Electron.
125
,
25
(
2016
).
3.
M.
Kryder
and
C.
Kim
,
IEEE Trans. Magn.
45
,
3406
(
2009
).
4.
J.
Akerman
,
Science
308
,
508
(
2005
).
5.
A. D.
Kent
and
D. C.
Worledge
,
Nat. Nanotechnol.
10
,
187
(
2015
).
6.
M.
Cubukcu
,
O.
Boulle
,
M.
Drouard
,
K.
Garello
,
C. O.
Avci
,
I. M.
Miron
,
J.
Langer
,
B.
Ocker
,
P.
Gambardella
, and
G.
Gaudin
,
Appl. Phys. Lett.
104
,
042406
(
2014
).
7.
M.
Fiebig
,
J. Phys. D.: Appl. Phys.
38
,
R123
(
2005
).
8.
N. A.
Spaldin
and
M.
Fiebig
,
Science
309
,
391
(
2005
).
9.
X.
He
,
Y.
Wang
,
N.
Wu
,
A. N.
Caruso
,
E.
Vescovo
,
K. D.
Belashchenko
,
P. A.
Dowben
, and
C.
Binek
,
Nat. Mater.
9
,
579
(
2010
).
10.
J. G.
Alzate
,
P. K.
Amiri
,
P.
Upadhyaya
,
S. S.
Cherepov
,
J.
Zhu
,
M.
Lewis
,
R.
Dorrance
,
J. A.
Katine
,
J.
Langer
,
K.
Galatsis
,
D.
Markovic
,
I.
Krivorotov
, and
K. L.
Wang
, in
2012 International Electron Devices Meeting
, 10–13 December
2012
, pp.
29.5.1
29.5.4
.
11.
S.
Fusil
,
V.
Garcia
,
A.
Barthelemy
, and
M.
Bibes
,
Annu. Rev. Mater. Res.
44
,
91
(
2014
).
12.
F.
Matsukura
,
Y.
Tokura
, and
H.
Ohno
,
Nat. Nanotechnol.
10
,
209
(
2015
).
13.
J. v d.
Boomgaard
,
A. M. J. G.
van Run
, and
J.
Van Suchtelen
, “
Ferroelectrics
,”
Ferroelectrics
14
,
727
(
1976
).
14.
N.
Tiercelin
,
Y.
Dusch
,
V.
Preobrazhensky
, and
P.
Pernod
,
J. Appl. Phys.
109
,
07D726
(
2011
).
15.
N.
Tiercelin
,
Y.
Dusch
,
A.
Klimov
,
S.
Giordano
,
V.
Preobrazhensky
, and
P.
Pernod
,
Appl. Phys. Lett.
99
,
192507
(
2011
).
16.
J.-M.
Hu
,
Z.
Li
,
L.-Q.
Chen
, and
C.-W.
Nan
,
Nat. Commun.
2
,
553
(
2011
).
17.
T.
Wu
,
A.
Bur
,
K.
Wong
,
P.
Zhao
,
C. S.
Lynch
,
P. K.
Amiri
,
K. L.
Wang
, and
G. P.
Carman
,
Appl. Phys. Lett.
98
,
262504
(
2011
).
18.
M.
Ghidini
,
R.
Pellicelli
,
J.
Prieto
,
X.
Moya
,
J.
Soussi
,
J.
Briscoe
,
S.
Dunn
, and
N.
Mathur
,
Nat. Commun.
4
,
1453
(
2013
).
19.
A. K.
Biswas
,
S.
Bandyopadhyay
, and
J.
Atulasimha
,
Appl. Phys. Lett.
105
,
072408
(
2014
).
20.
S.
Giordano
,
Y.
Dusch
,
N.
Tiercelin
,
P.
Pernod
, and
V.
Preobrazhensky
,
Phys. Rev. B
85
,
155321
(
2012
).
21.
S.
Giordano
,
Y.
Dusch
,
N.
Tiercelin
,
P.
Pernod
, and
V.
Preobrazhensky
,
J. Phys. D.: Appl. Phys.
46
,
325002
(
2013
).
22.
A. K.
Biswas
,
S.
Bandyopadhyay
, and
J.
Atulasimha
,
Appl. Phys. Lett.
104
,
232403
(
2014
).
23.
N.
Tiercelin
,
Y.
Dusch
,
S.
Giordano
,
A.
Klimov
,
V.
Preobrazhensky
, and
P.
Pernod
, “
Strain Mediated Magnetoelectric Memory
,” in
Nanomagnetic and Spintronic Devices for Energy Efficient Computing
(
Wiley and Sons
.,
2015
), Chap. 8.
24.
J. L.
Hockel
,
S. D.
Pollard
,
K. P.
Wetzlar
,
T.
Wu
,
Y.
Zhu
, and
G. P.
Carman
,
Appl. Phys. Lett.
102
,
242901
(
2013
).
25.
Y.
Dusch
,
N.
Tiercelin
,
A.
Klimov
,
S.
Giordano
,
V.
Preobrazhensky
, and
P.
Pernod
,
J. Appl. Phys.
113
,
17C719
(
2013
).
26.
J.
Cui
,
C.-Y.
Liang
,
E. A.
Paisley
,
A.
Sepulveda
,
J. F.
Ihlefeld
,
G. P.
Carman
, and
C. S.
Lynch
,
Appl. Phys. Lett.
107
,
092903
(
2015
).
27.
Z.
Zhao
,
M.
Jamali
,
N.
D'Souza
,
D.
Zhang
,
S.
Bandyopadhyay
,
J.
Atulasimha
, and
J.-P.
Wang
,
Appl. Phys. Lett.
109
,
092403
(
2016
).
28.
Y.
Dusch
,
V.
Rudenko
,
N.
Tiercelin
,
S.
Giordano
,
V.
Preobrazhensky
, and
P.
Pernod
,
Nanomater. Nanostruct.
2
,
44
(
2012
), see http://www.radiotec.ru/catalog.php?cat=jr18&art=11419.
29.
A.
Jaiswal
and
K.
Roy
,
Sci. Rep.
7
,
39793
(
2017
).
30.
J. Z.
Sun
,
Proc. SPIE
9931
,
993113
(
2016
).
31.
W.
Zhao
,
T.
Devolder
,
Y.
Lakys
,
J.
Klein
,
C.
Chappert
, and
P.
Mazoyer
, in
Proceedings of the 22th European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis
W.
Zhao
,
T.
Devolder
,
Y.
Lakys
,
J.
Klein
,
C.
Chappert
, and
P.
Mazoyer
, [
Microelectron. Rel.
51
,
1454
(
2011
)].
32.
N.
Tiercelin
,
Y.
Dusch
,
V.
Preobrazhensky
, and
P.
Pernod
, “
Magnetoelectric memory
,” Granted Patents FR2961632B1, US8908422B2, RU2573207C2, and JP5784114B2.
33.
N.
Tiercelin
,
V.
Preobrazhensky
,
P.
Pernod
, and
A.
Ostaschenko
,
Appl. Phys. Lett.
92
,
062904
(
2008
).
34.
F.
Wang
,
L.
Luo
,
D.
Zhou
,
X.
Zhao
, and
H.
Luo
,
Appl. Phys. Lett.
90
,
212903
(
2007
).
35.
J.
Scott
,
Ferroelectric Memories
(
Springer-Verlag
,
Berlin, Heidelberg
,
2000
).
You do not currently have access to this content.