The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = −0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

1.
P. G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
861
(
1985
).
2.
G.
Reiter
and
S.
Napolitano
,
J. Polym. Sci., Part B
48
,
2544
(
2010
).
3.
R.
Mhanna
,
A. R.
Abdel Hamid
,
S.
Dutta
,
R.
Lefort
,
L.
Noirez
,
B.
Frick
, and
D.
Morineau
,
J. Chem. Phys.
146
,
024501
(
2017
).
4.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
,
Chem. Rev.
116
,
7698
(
2016
).
5.
A.
Mari
and
J.
Eisert
,
Phys. Rev. Lett.
108
,
120602
(
2012
).
6.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
Appl. Phys. Rev.
1
,
11305
(
2014
).
7.
C.
Maggi
,
M.
Paoluzzi
,
A.
Lepore
,
L.
Angelani
, and
R.
di Leonardo
,
Phys. Rev. Lett.
113
,
238303
(
2014
).
8.
Z.
Preisler
and
M.
Dijkstra
,
Soft Matter
12
,
6043
(
2016
).
9.
L.
Bocquet
and
J. L.
Barrat
,
Phys. Rev. E
49
,
3079
3092
(
1994
).
10.
K.
Huang
and
I.
Szlufarska
,
Phys. Rev. E
89
,
32119
(
2014
).
11.
P.
Baroni
,
P.
Bouchet
, and
L.
Noirez
,
J. Phys. Chem. Lett.
4
,
2026
(
2013
).
12.
P.
Baroni
and
L.
Noirez
, French patent PCT, CNRS: DI 05815-01 FR12 (2012).
13.
B. V.
Derjaguin
,
U. V.
Bazaron
,
Kh. D.
Lamazhapova
, and
B. D.
Tsidypov
,
Phys. Rev. A
42
,
2255
(
1990
).
14.
G.
Reiter
,
A.
Levent Demirel
,
J.
Peanasky
,
L.
Cai
, and
S.
Granick
,
J. Chem. Phys.
101
,
2606
(
1994
).
15.
A.
Bund
and
G.
Schwitzgebel
,
Anal. Chem.
70
,
2584
(
1998
).
16.
Y.
Chushkin
,
C.
Caronna
, and
A.
Madsen
,
Europhys. Lett.
83
,
36001
(
2008
).
17.
L.
Noirez
and
P.
Baroni
,
J. Phys.: Condens. Matter
24
,
372101
(
2012
).
18.
L.
Noirez
and
P.
Baroni
,
J. Mol. Struct.
972
,
16
(
2010
).
19.
L.
Noirez
,
P.
Baroni
, and
H.
Cao
,
J. Mol. Liq.
116
,
18990
(
2012
).
20.
J. D.
Bernardin
,
I.
Mudawar
,
C. B.
Walsh
, and
E. I.
Franses
,
Int. J. of Heat and Mass Transfer
40
(
5
),
1017
(
1997
).
21.
G.
Lefevre
,
L.
Cerovic
,
S.
Milonjic
,
M.
Fedoroff
,
J.
Finne
, and
A.
Jaubertie
,
J. Colloid Interface Sci.
337
,
449
(
2009
).
22.
P.
Lv
,
Z.
Yang
,
Z.
Hua
,
M.
Li
,
M.
Lin
, and
Z.
Dong
,
Colloids Surf. A
504
,
287
(
2016
).
23.
D. P.
Shelton
,
J. Chem. Phys.
141
,
224506
(
2014
).
24.
A.
Zaccone
and
E.
Terentjev
,
Phys. Rev. Lett.
110
,
178002
(
2013
).
25.
A. V.
Granato
,
Mater. Sci. Eng., A
521
,
6
(
2009
).
26.
M.
Schoen
,
S.
Hess
, and
D. J.
Diestler
,
Phys. Rev. E
52
,
2587
(
1995
).
27.
F.
Volino
,
Ann. Phys.
22
,
1–2
(
1997
).
28.
K.
Huang
and
I.
Szlufarska
,
Nat. Commun.
6
,
8558
(
2015
).
29.
R.
Khare
,
P.
Keblinski
, and
A.
Yethiraj
,
J. Heat Mass Transfer
49
,
3401
3407
(
2006
).
30.
S. C.
Somé
,
D.
Delaunay
, and
V.
Gaudefroy
,
Appl. Therm. Eng.
61
,
531
540
(
2013
).
31.
A.
Badillo
,
Phys. Rev. E
91
,
033005
(
2015
).
32.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
,
Annu. Rev. Fluid Mech.
30
,
139
165
(
1998
).
33.
C.
Tsallis
,
Physica A
221
,
277
290
(
1995
).
You do not currently have access to this content.