Searching for two-dimensional (2D) realistic materials that are able to realize room-temperature quantum spin Hall effects is currently a growing field. Here, through ab initio calculations, we identify arsenene oxide, AsO, as an excellent candidate, which demonstrates high stability, flexibility, and tunable spin-orbit coupling gaps. In contrast to known pristine or functionalized arsenene, the maximum nontrivial bandgap of AsO reaches 89 meV and can be further enhanced to 130 meV under biaxial strain. By sandwiching 2D AsO between boron nitride sheets, we propose a quantum well in which the band topology of AsO is preserved with a sizeable bandgap. Considering that AsO having fully oxidized surfaces are naturally stable against surface oxidization and degradation, this functionality provides a viable strategy for designing topological quantum devices operating at room temperature.

1.
Z. K.
Liu
,
B.
Zhou
,
Y.
Zhang
,
Z. J.
Wang
,
H.
Weng
,
D.
Prabhakaran
,
S.-K.
Mo
,
Z. X.
Shen
,
Z.
Fang
,
X.
Dai
,
Z.
Hussain
, and
Y. L.
Chen
, “
Discovery of a three-dimensional topological Dirac semimetal, Na3Bi
,”
Science
343
,
864
(
2014
).
2.
Z. K.
Liu
,
J.
Jiang
,
B.
Zhou
,
Z. J.
Wang
,
Y.
Zhang
,
H. M.
Weng
,
D.
Prabhakaran
,
S. K.
Mo
,
H.
Peng
,
P.
Dudin
,
T.
Kim
,
M.
Hoesch
,
Z.
Fang
,
X.
Dai
,
Z.-X.
Shen
,
D. L.
Feng
,
Z.
Hussain
, and
Y. L.
Chen
, “
A stable three-dimensional topological Dirac semimetal Cd3As2
,”
Nat. Mater.
13
,
677
(
2014
).
3.
G.
Xu
,
H.
Weng
,
Z.
Wang
,
X.
Dai
, and
Z.
Fang
, “
Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4
,”
Phys. Rev. Lett.
107
,
186806
(
2011
).
4.
B. Q.
Lv
,
H. M.
Weng
,
B. B.
Fu
,
X. P.
Wang
,
H.
Miao
,
J.
Ma
,
P.
Richard
,
X. C.
Huang
,
L. X.
Zhao
,
G. F.
Chen
,
Z.
Fang
,
X.
Dai
,
T.
Qian
, and
H.
Ding
, “
Experimental discovery of Weyl semimetal TaAs
,”
Phys. Rev. X
5
,
031013
(
2015
).
5.
A. A.
Burkov
,
M. D.
Hook
, and
L.
Balents
, “
Topological nodal semimetals
,”
Phys. Rev. B
84
,
235126
(
2011
).
6.
Y.
Kim
,
B. J.
Wieder
,
C. L.
Kane
, and
A. M.
Rappe
, “
Dirac line nodes in inversion-symmetric crystals
,”
Phys. Rev. Lett.
115
,
036806
(
2015
).
7.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
, “
Topological insulators in three dimensions
,”
Phys. Rev. Lett.
98
,
106803
(
2007
).
8.
H.
Zhang
,
C.-X.
Liu
,
X.-L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S.-C.
Zhang
, “
Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface
,”
Nat. Phys.
5
,
438
442
(
2009
).
9.
Y.
Xia
,
D.
Qian
,
D.
Hsieh
,
L.
Wray
,
A.
Pal
,
H.
Lin
,
A.
Bansil
,
D.
Grauer
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
, “
Observation of a large-gap topological-insulator class with a single Dirac cone on the surface
,”
Nat. Phys.
5
,
398
402
(
2009
).
10.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
(
2006
).
11.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
770
(
2007
).
12.
C.
Liu
,
T. L.
Hughes
,
X.-L.
Qi
,
K.
Wang
, and
S.-C.
Zhang
, “
Quantum spin Hall effect in inverted Type-II semiconductors
,”
Phys. Rev. Lett.
100
,
236601
(
2008
).
13.
L.
Du
,
I.
Knez
,
G.
Sullivan
, and
R. R.
Du
, “
Robust helical edge transport in gated InAs/GaSb bilayers
,”
Phys. Rev. Lett.
114
,
096802
(
2015
).
14.
R. W.
Zhang
,
C. W.
Zhang
,
W. X.
Ji
,
P.
Li
,
P. J.
Wang
,
S. S.
Li
, and
S. S.
Yan
, “
Silicon-based chalcogenide: Unexpected quantum spin Hall insulator with sizable band gap
,”
Appl. Phys. Lett.
109
,
182109
(
2016
).
15.
M.
Ezawa
, “
Topological insulator and helical zero mode in silicene under inhomogeneous electric field
,”
New J. Phys.
14
,
033003
(
2012
).
16.
J. E.
Padilha
,
L. B.
Abdalla
,
A. J. R.
da Silva
, and
A.
Fazzio
, “
Fully and partially iodinated germanane as a platform for the observation of the quantum spin Hall effect
,”
Phys. Rev. B
93
,
045135
(
2016
).
17.
R. W.
Zhang
,
W. X.
Ji
,
C. W.
Zhang
,
S. S.
Li
,
P.
Li
, and
P. J.
Wang
, “
New family of room temperature quantum spin Hall insulators in two-dimensional germanene films
,”
J. Mater. Chem. C
4
,
2088
(
2016
).
18.
Y.
Xu
,
B.
Yan
,
H. J.
Zhang
,
J.
Wang
,
G.
Xu
,
P.
Tang
,
W.
Duan
, and
S.-C.
Zhang
, “
Large-gap quantum spin Hall insulators in tin films
,”
Phys. Rev. Lett.
111
,
136804
(
2013
).
19.
Y. P.
Wang
,
C. W.
Zhang
,
W. X.
Ji
,
P.
Li
,
P. J.
Wang
, and
S. S.
Yan
, “
Large-gap quantum spin Hall state in functionalized dumbbell stanene
,”
Appl. Phys. Lett.
108
,
073104
(
2016
).
20.
R. W.
Zhang
,
C. W.
Zhang
,
W. X.
Ji
,
S. S.
Li
,
S. J.
Hu
,
S. S.
Yan
,
P.
Li
,
P. J.
Wang
, and
F.
Li
, “
Ethynyl-functionalized stanene film: A promising candidate as large-gap quantum spin Hall insulator
,”
New J. Phys.
17
,
083036
(
2015
).
21.
R. W.
Zhang
,
C. W.
Zhang
,
W. X.
Ji
,
S. S.
Li
,
P.
Li
, and
P. J.
Wang
, “
Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films
,”
Sci. Rep.
6
,
18879
(
2016
).
22.
H.
Zhao
,
C. W.
Zhang
,
W. X.
Ji
,
R. W.
Zhang
,
S. S.
Li
,
S. S.
Yan
,
B. M.
Zhang
,
P.
Li
, and
P. J.
Wang
, “
Unexpected giant-gap quantum spin Hall insulator in chemically decorated plumbene monolayer
,”
Sci. Rep.
6
,
20152
(
2016
).
23.
L. J.
Zhou
,
L. Z.
Kou
,
Y.
Sun
,
C.
Felser
,
F. M.
Hu
,
G. C.
Shan
,
S. C.
Smith
,
B. H.
Yan
, and
T.
Frauenheim
, “
New family of quantum spin Hall insulators in two-dimensional transitionmetal halidewith large nontrivial band gaps
,”
Nano Lett.
15
,
7867
(
2015
).
24.
H.
Weng
,
X.
Dai
, and
Z.
Fang
, “
Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators
,”
Phys. Rev. X
4
,
011002
(
2014
).
25.
F.-C.
Chuang
,
L.-Z.
Yao
,
Z.-Q.
Huang
,
Y.-T.
Liu
,
C.-H.
Hsu
,
T.
Das
,
H.
Lin
, and
A.
Bansil
, “
Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi
,”
Nano Lett.
14
,
2505
(
2014
).
26.
W.
Luo
and
H. J.
Xiang
, “
Room temperature quantum spin Hall insulators with a buckled square lattice
,”
Nano Lett.
15
,
3230
3235
(
2015
).
27.
Z. G.
Song
,
C. C.
Liu
,
J. B.
Yang
,
J. Z.
Han
,
B. T.
Fu
,
M.
Ye
,
B. T.
Fu
,
Y. C.
Yang
,
Q.
Niu
,
J.
Lu
, and
Y. G.
Yao
, “
Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap
,”
NPG Asia Mater.
6
,
e147
(
2014
).
28.
A.
Shitade
,
H.
Katsura
,
J.
Kuneš
,
X.-L.
Qi
,
S.-C.
Zhang
, and
N.
Nagaosa
, “
Quantum spin Hall effect in a transition metal oxide Na2IrO3
,”
Phys. Rev. Lett.
102
,
256403
(
2009
).
29.
D.
Pesin
and
L.
Balents
, “
Mott physics and band topology in materials with strong spin-orbit interaction
,”
Nat. Phys.
6
,
376
(
2010
).
30.
X.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
, “
Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates
,”
Phys. Rev. B
83
,
205101
(
2011
).
31.
X.
Wan
,
A.
Vishwanath
, and
S. Y.
Savrasov
, “
Computational design of axion insulators based on 5d spinel compounds
,”
Phys. Rev. Lett.
108
,
146601
(
2012
).
32.
B.
Anasori
,
Y.
Xie
,
M.
Beidaghi
,
J.
Lu
,
B. C.
Hosler
,
L.
Hultman
,
P. R. C.
Kent
,
Y.
Gogotsi
, and
M. W.
Barsoum
, “
Two-dimensional, ordered, double transition metals carbides (MXenes)
,”
ACS Nano
9
,
9507
(
2015
).
33.
M.
Khazaei
,
A.
Ranjbar
,
M.
Arai
, and
S.
Yunoki
, “
Topological insulators in the ordered double transition metals M′2M′′C2 MXenes (M′ = Mo, W; M′′ = Ti, Zr, Hf)
,”
Phys. Rev. B
94
,
125152
(
2016
).
34.
O.
Malyi
,
K.
Sopiha
,
C.
Draxland
, and
C.
Persson
, “
Stability and electronic properties of phosphorene oxides: From 0-dimensional to amorphous 2-dimensional structures
,”
Nanoscale
9
,
2428
2435
(
2017
).
35.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
36.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
37.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
39.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
, “
Screened hybrid density functionals applied to solids
,”
J. Chem. Phys.
124
,
154709
(
2006
).
40.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
, “
First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures
,”
Phys. Rev. B
78
,
134106
(
2008
).
41.
C. W.
Zhang
and
S. S.
Yan
, “
First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation
,”
J. Phys. Chem. C
116
,
4163
4166
(
2012
).
42.
F. B.
Zheng
and
C. W.
Zhang
, “
The electronic and magnetic properties of functionalized silicene: A first-principles study
,”
Nanoscale Res. Lett.
7
,
422
(
2012
).
43.
Y. P.
Wang
,
W. X.
Ji
,
C. W.
Zhang
,
P.
Li
,
F.
Li
,
M. J.
Ren
,
X. L.
Chen
,
M.
Yuan
, and
P. J.
Wang
, “
Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene
,”
Sci. Rep.
6
,
20342
(
2016
).
44.
J.
Zhao
,
Y.
Li
, and
J.
Ma
, “
Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH3) monolayers with pronounced light absorption
,”
Nanoscale
8
,
9657
9666
(
2016
).
45.
M. P.
Lopez Sancho
,
J. M.
Lopez Sancho
,
J. M. L.
Sancho
, and
J.
Rubio
, “
Highly convergent schemes for the calculation of bulk and surface Green functions
,”
J. Phys. F
15
,
851
(
1985
).
46.
R.
Yu
,
X. L.
Qi
,
A.
Bernevig
,
Z.
Fang
, and
X.
Dai
, “
Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection
,”
Phys. Rev. B
84
,
075119
(
2011
).
47.
Y.-P.
Wang
,
C.-W.
Zhang
,
W.-X.
Ji
,
R.-W.
Zhang
,
P.
Li
,
P.-J.
Wang
,
M.-J.
Ren
,
X.-L.
Chen
, and
M.
Yuan
, “
Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer
,”
J. Phys. D.: Appl. Phys.
49
,
055305
(
2016
).
48.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Van der Waals density functionals applied to solids
,”
Phys. Rev. B
83
,
195131
(
2011
).
You do not currently have access to this content.