We report the concept of a frequency tunable antenna device operating in the millimeter wave frequency domain. The ability of the antenna to switch between two frequency states is achieved by the monolithic integration of a metal-insulator transition material (vanadium dioxide, VO2). The VO2 material is an insulator at room temperature but can be driven in a high conductivity metallic state when it is electrically activated using a continuous (DC) voltage. The antenna design is based on a slot antenna excited by a microstrip line having a length that can be conveniently varied using a VO2-based switch. Following the high-frequency VO2 material characterization, we present its monolithic integration in the device prototype along with the comparison between the measured and the simulated performances of the agile antenna. Thus, depending on the VO2 material state, the antenna device can be conveniently switched between 33 and 37 GHz operating frequency bands presenting stable radiation patterns with 5.28 dBi and 5.41 dBi maximum gains, respectively.

1.
S.
Cheng
,
P.
Rantakari
,
R.
Malmqvist
,
C.
Samuelsson
,
T.
Vaha-Heikkila
,
A.
Rydberg
, and
J.
Varis
,
IEEE Antennas Wireless Propag. Lett.
8
,
383
(
2009
).
2.
S.
Sinha
and
J.
du Preez
,
Millimeter-Wave Antennas: Configurations and Applications
(
Springer International Publishing
,
2016
).
3.
4.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
,
Annu. Rev. Mater. Res.
41
,
337
367
(
2011
).
5.
J.
Leroy
,
A.
Crunteanu
,
A.
Bessaudou
,
F.
Cosset
,
C.
Champeaux
, and
J.-C.
Orlianges
,
Appl. Phys. Lett.
100
,
213507
(
2012
).
6.
T. L.
Cocker
,
L. V.
Titova
, and
S.
Fourneaux
,
Phys. Rev. B
85
,
155120
(
2012
).
7.
A.
Crunteanu
,
G.
Humbert
,
J.
Leroy
,
L.
Huitema
,
J.-C.
Orlianges
, and
A.
Bessaudou
,
Proc. SPIE
10103
,
01031H-1-9
(
2017
).
8.
A.
Mennai
,
A.
Bessaudou
,
F.
Cosset
,
C.
Guines
,
D.
Passerieux
,
P.
Blondy
, and
A.
Crunteanu
, in
IEEE International Microwave Symposium
,
Phoenix, USA
(
2015
).
9.
L.
Huitema
,
A.
Crunteanu
, and
H.
Wong
, in
IEEE International Workshop on Antenna Technology
,
Florida, USA
(
2016
).
10.
C.
Hillmanl
,
P. A.
Stupar
,
J. B.
Hacker
,
Z.
Griffith
,
M.
Field
, and
M.
Rodwelz
, in
IEEE International Microwave Symposium
,
Tampa, FL, USA
(
2014
).
11.
D.
Bouyge
,
A.
Crunteanu
,
O.
Massague
,
J. C.
Orlianges
,
C.
Champeaux
,
A.
Cathierinot
,
A.
Velez
,
J.
Bonache
,
F.
Martin
, and
P.
Blondy
, in
European Microwave Week
,
Paris, France
(
2010
).
12.
J.
Givernaud
,
A.
Crunteanu
,
J. C.
Orlianges
,
A.
Pothier
,
C.
Champeaux
,
A.
Catherinot
, and
P.
Blondy
,
IEEE Trans. Microwave Theory Tech.
58
,
2352
(
2010
).
13.
N.
Born
,
A.
Crunteanu
,
G.
Humbert
,
A.
Bessaudou
,
M.
Koch
, and
B. M.
Fischer
,
IEEE Trans. Terahertz Sci. Technol.
5
,
1035
(
2015
).
14.
D. E.
Anagnostou
,
T. S.
Teeslink
,
D.
Torres
, and
N.
Sepúlveda
, in
IEEE International Symposium on Antennas and Propagation (APSURSI)
,
Fajardo
(
2016
).
15.
R. A.
Rodríguez-Solís
and
Y. M.
Saadé
, in
IEEE Antennas and Propagation Society International Symposium (APSURSI)
,
Orlando, USA
,
2013
.
16.
S.
Teeslink
,
D.
Torres
,
J. L.
Ebel
,
N.
Sepulveda
, and
D. E.
Anagnostou
,
IEEE Antennas Wireless Propagation Lett.
14
,
1381
(
2015
).
17.
S.
Earl
,
T.
James
,
T.
Davis
,
J.
McCallum
,
R.
Marvel
,
R.
Haglund
, and
A.
Roberts
,
Opt. Express
21
,
27503
27508
(
2013
).
18.
CST Microwave Studio®, Suite-2016, CST Microwave Studio User Manual available: www.cst.com.
19.
V.
Théry
,
A.
Boulle
,
A.
Crunteanu
,
J. C.
Orlianges
,
A.
Beaumont
,
R.
Mayet
,
A.
Mennai
,
F.
Cosset
,
A.
Bessaudou
, and
M.
Fabert
,
J. Appl. Phys
121
,
055303
(
2017
).
20.
V.
Théry
,
A.
Boulle
,
A.
Crunteanu
,
J. C.
Orlianges
,
A.
Beaumont
,
R.
Mayet
,
A.
Mennai
,
F.
Cosset
,
A.
Bessaudou
, and
M.
Fabert
,
Phys. Rev. B
93
,
184106
(
2016
).
21.
A.
Crunteanu
,
J.
Givernaud
,
J.
Leroy
,
D.
Mardivirin
,
C.
Champeaux
,
J.-C.
Orlianges
,
A.
Catherinot
, and
P.
Blondy
,
Sci. Technol. Adv. Mater.
11
,
065002
(
2010
).
You do not currently have access to this content.