The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.

1.
S.
Mangin
,
D.
Ravelosona
,
J. A.
Katine
, and
E. E.
Fullerton
,
Nat. Mater.
5
,
210
(
2006
).
2.
S.
Ikeda
,
K.
Miura
,
H.
Yamamoto
,
K.
Mizunuma
,
H. D.
Gan
,
M.
Endo
,
S.
Kanai
,
J.
Hayakawa
,
F.
Matsukura
, and
H.
Ohno
,
Nat. Mater.
9
,
721
(
2010
).
4.
L.
Thomas
,
G.
Jan
,
J.
Zhu
,
H.
Liu
,
Y. J.
Lee
,
S.
Le
,
R. Y.
Tong
,
K.
Pi
,
Y. J.
Wang
,
D.
Shen
,
R.
He
,
J.
Haq
,
J.
Teng
,
V.
Lam
,
K.
Huang
,
T.
Zhong
,
T.
Torng
, and
P. K.
Wang
,
J. Appl. Phys.
115
,
172615
(
2014
).
5.
T.
Kishi
,
H.
Yoda
,
T.
Kai
,
T.
Nagase
,
E.
Kitagawa
,
M.
Yoshikawa
,
K.
Nishiyama
,
T.
Daibou
,
M.
Nagamine
,
M.
Amano
,
S.
Takahashi
,
M.
Nakayama
,
N.
Shimomura
,
H.
Aikawa
,
S.
Ikegawa
,
S.
Yuasa
,
K.
Yakushiji
,
H.
Kubota
,
a.
Fukushima
,
M.
Oogane
,
T.
Miyazaki
, and
K.
Ando
, in
2008 IEEE International Electron Devices Meeting
(
2008
), p.
1
.
6.
S.
Yuasa
,
Y.
Suzuki
,
T.
Katayama
, and
K.
Ando
,
Appl. Phys. Lett.
87
,
242503
(
2005
).
7.
X.
Kozina
,
S.
Ouardi
,
B.
Balke
,
G.
Stryganyuk
,
G. H.
Fecher
,
C.
Felser
,
S.
Ikeda
,
H.
Ohno
, and
E.
Ikenaga
,
Appl. Phys. Lett.
96
,
072105
(
2010
).
8.
S. V.
Karthik
,
Y. K.
Takahashi
,
T.
Ohkubo
,
K.
Hono
,
S.
Ikeda
, and
H.
Ohno
,
J. Appl. Phys.
106
,
023920
(
2009
).
9.
J.
Chatterjee
,
T.
Tahmasebi
,
J.
Swerts
,
G. S.
Kar
, and
J.
De Boeck
,
Appl. Phys. Express
8
,
063002
(
2015
).
10.
M.
Yamanouchi
,
R.
Koizumi
,
S.
Ikeda
,
H.
Sato
,
K.
Mizunuma
,
K.
Miura
,
H. D.
Gan
,
F.
Matsukura
, and
H.
Ohno
,
J. Appl. Phys.
109
,
07C712
(
2011
).
11.
S.
Ikeda
,
J.
Hayakawa
,
Y.
Ashizawa
,
Y. M.
Lee
,
K.
Miura
,
H.
Hasegawa
,
M.
Tsunoda
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
93
,
082508
(
2008
).
12.
G. G.
An
,
J.
Bin Lee
,
S. M.
Yang
,
J. H.
Kim
,
W. S.
Chung
, and
J. P.
Hong
,
Acta Mater.
87
,
259
(
2015
).
13.
W.
Skowroński
,
T.
Nozaki
,
D. D.
Lam
,
Y.
Shiota
,
K.
Yakushiji
,
H.
Kubota
,
A.
Fukushima
,
S.
Yuasa
, and
Y.
Suzuki
,
Phys. Rev. B: Condens. Matter Mater. Phys.
91
,
184410
(
2015
).
14.
B.
Rodmacq
,
S.
Auffret
,
B.
Dieny
, and
L. E.
Nistor
, U.S. patent application 8,513,944 B2 (
2013
).
15.
H.
Sato
,
T.
Yamamoto
,
M.
Yamanouchi
,
S.
Ikeda
,
S.
Fukami
,
K.
Kinoshita
,
F.
Matsukura
,
N.
Kasai
, and
H.
Ohno
,
Tech. Dig. - Int. Electron Devices Meet.
2013
,
3.2.1
.
16.
S. H.
Jang
,
T.
Kang
,
H. J.
Kim
, and
K. Y.
Kim
,
Appl. Phys. Lett.
81
,
105
(
2002
).
17.
S. Y.
Yoon
,
Y. I.
Kim
,
D. H.
Lee
,
Y. S.
Kim
,
D. H.
Yoon
, and
S. J.
Suh
,
Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol.
110
,
265
(
2004
).
You do not currently have access to this content.