Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ∼97% (15%) combined with an extremely sharp absorption cut-off (transition region ∼200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.

1.
M.
Romero
and
A.
Steinfeld
,
Energy Environ. Sci.
5
,
9234
(
2012
).
2.
L.
Zhou
,
Y.
Tan
,
J.
Wang
,
W.
Xu
,
Y.
Yuan
,
W.
Cai
,
S.
Zhu
, and
J.
Zhu
,
Nat. Photonics
10
,
393
(
2016
).
3.
A.
Steinfeld
,
Sol. Energy
78
,
603
(
2005
).
4.
N.
Wang
,
L.
Han
,
H. C.
He
,
N. H.
Park
, and
K.
Koumoto
,
Energy Environ. Sci.
4
,
3676
(
2011
).
5.
A.
Lenert
,
D. M.
Bierman
,
Y.
Nam
,
W. R.
Chan
,
I.
Celanovic
,
M.
Soljacic
, and
E. N.
Wang
,
Nat. Nanotechnol.
9
,
126
(
2014
).
6.
P.
Bermel
,
M.
Ghebrebrhan
,
W.
Chan
,
Y. X.
Yeng
,
M.
Araghchini
,
R.
Hamam
,
C. H.
Marton
,
K. F.
Jensen
,
M.
Soljacic
,
J. D.
Joannopoulos
 et al,
Opt. Express
18
,
A314
(
2010
).
7.
D.
Kraemer
,
B.
Poudel
,
H. P.
Feng
,
J. C.
Caylor
,
B.
Yu
,
X.
Yan
,
Y.
Ma
,
X.
Wang
,
D.
Wang
,
A.
Muto
 et al,
Nat. Mater.
10
,
532
(
2011
).
8.
S.
Chu
and
A.
Majumdar
,
Nature
488
,
294
(
2012
).
9.
L.
Zhou
,
S.
Zhuang
,
C.
He
,
Y.
Tan
,
Z.
Wang
, and
J.
Zhu
,
Nano Energy
32
,
195
(
2017
).
10.
G.
Ni
,
G.
Li
,
S. V.
Boriskina
,
H.
Li
,
W.
Yang
,
T.
Zhang
, and
G.
Chen
,
Nat. Energy
1
,
16126
(
2016
).
11.
F.
Cao
,
D.
Kraemer
,
T. Y.
Sun
,
Y. C.
Lan
,
G.
Chen
, and
Z. F.
Ren
,
Adv. Energy Mater.
5
,
1401042
(
2015
).
12.
F.
Cao
,
K.
McEnaney
,
G.
Chen
, and
Z. F.
Ren
,
Energy Environ. Sci.
7
,
1615
(
2014
).
13.
F.
Cao
,
D.
Kraemer
,
L.
Tang
,
Y.
Li
,
A. P.
Litvinchuk
,
J. M.
Bao
,
G.
Chen
, and
Z. F.
Ren
,
Energy Environ. Sci.
8
,
3040
(
2015
).
14.
J. A.
Thornton
and
J. L.
Lamb
,
Thin Solid Films
96
,
175
(
1982
).
15.
J. I.
Gittleman
,
E. K.
Sichel
,
H. W.
Lehmann
, and
R.
Widmer
,
Appl. Phys. Lett.
35
,
742
(
1979
).
16.
J.
Moon
,
D.
Lu
,
B.
VanSaders
,
T. K.
Kim
,
S. D.
Kong
,
S. H.
Jin
,
R. K.
Chen
, and
Z. W.
Liu
,
Nano Energy
8
,
238
(
2014
).
17.
J.
Moon
,
T. K.
Kim
,
B.
VanSaders
,
C.
Choi
,
Z. W.
Liu
,
S. H.
Jin
, and
R. K.
Chen
,
Sol. Energy Mater. Sol. Cells
134
,
417
(
2015
).
18.
Y.
Yin
,
Y.
Pan
,
L. X.
Hang
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Thin Solid Films
517
,
1601
(
2009
).
19.
N.
Selvakumar
and
H. C.
Barshilia
,
Sol. Energy Mater. Sol. Cells
98
,
1
(
2012
).
20.
A.
Kohiyama
,
M.
Shimizu
, and
H.
Yugami
,
Appl. Phys. Express
9
,
112302
(
2016
).
21.
X. F.
Li
,
Y. R.
Chen
,
J.
Miao
,
P.
Zhou
,
Y. X.
Zheng
,
L. Y.
Chen
, and
Y. P.
Lee
,
Opt. Express
15
,
1907
(
2007
).
22.
E.
Rephaeli
and
S. H.
Fan
,
Opt. Express
17
,
15145
(
2009
).
23.
V.
Rinnerbauer
,
A.
Lenert
,
D. M.
Bierman
,
Y. X.
Yeng
,
W. R.
Chan
,
R. D.
Geil
,
J. J.
Senkevich
,
J. D.
Joannopoulos
,
E. N.
Wang
,
M.
Soljacic
 et al,
Adv. Energy Mater.
4
,
1400334
(
2014
).
24.
P.
Li
,
B.
Liu
,
Y.
Ni
,
K. K.
Liew
,
J.
Sze
,
S.
Chen
, and
S.
Shen
,
Adv. Mater.
27
,
4585
(
2015
).
25.
C. E.
Kennedy
,
Review of Mid-to High-Temperature Solar Selective Absorber Materials
(
National Renewable Energy Laboratory
,
Golden, Colorado
,
2002
).
26.
V.
Rinnerbauer
,
S.
Ndao
,
Y. X.
Yeng
,
W. R.
Chan
,
J. J.
Senkevich
,
J. D.
Joannopoulos
,
M.
Soljacic
, and
I.
Celanovic
,
Energy Environ. Sci.
5
,
8815
(
2012
).
27.
A.
Mavrokefalos
,
S. E.
Han
,
S.
Yerci
,
M. S.
Branham
, and
G.
Chen
,
Nano Lett.
12
,
2792
(
2012
).
28.
E.
Garnett
and
P. D.
Yang
,
Nano Lett.
10
,
1082
(
2010
).
29.
J.
Zhu
,
C. M.
Hsu
,
Z.
Yu
,
S.
Fan
, and
Y.
Cui
,
Nano Lett.
10
,
1979
(
2010
).
30.
H.
Rogne
,
P. J.
Timans
, and
H.
Ahmed
,
Appl. Phys. Lett.
69
,
2190
(
1996
).
31.
P. J.
Timans
,
J. Appl. Phys.
74
,
6353
(
1993
).
32.
H. H.
Li
,
J. Chem. Phys. Ref. Data
9
,
561
(
1980
).
33.
Y. P.
Varshni
,
Physica
34
,
149
(
1967
).
34.
V.
Alex
,
S.
Finkbeiner
, and
J.
Weber
,
J. Appl. Phys.
79
,
6943
(
1996
).
35.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
36.
J. S.
Blakemore
,
J. Appl. Phys.
53
,
R123
(
1982
).
37.
M. P.
Thekaekara
,
The Solar Constant and the Solar Spectrum Measured from a Research Aircraft
(
NASA
,
Washington
,
1970
).
38.
A.
Lenert
,
Y.
Nam
,
D. M.
Bierman
, and
E. N.
Wang
,
Opt. Express
22
,
A1604
(
2014
).
39.
G.
Mariani
,
R. B.
Laghumavarapu
,
B. T.
de Villers
,
J.
Shapiro
,
P.
Senanayake
,
A.
Lin
,
B. J.
Schwartz
, and
D. L.
Huffaker
,
Appl. Phys. Lett.
97
,
013107
(
2010
).
40.
K. Q.
Peng
,
J. J.
Hu
,
Y. J.
Yan
,
Y.
Wu
,
H.
Fang
,
Y.
Xu
,
S. T.
Lee
, and
J.
Zhu
,
Adv. Funct. Mater.
16
,
387
(
2006
).
41.
K. Q.
Peng
,
Y. J.
Yan
,
S. P.
Gao
, and
J.
Zhu
,
Adv. Funct. Mater.
13
,
127
(
2003
).
42.
K. Q.
Peng
and
S. T.
Lee
,
Adv. Mater.
23
,
198
(
2011
).
43.
M.
Steglich
,
D.
Lehr
,
S.
Ratzsch
,
T.
Kasebier
,
F.
Schrempel
,
E. B.
Kley
, and
A.
Tunnermann
,
Laser Photonics Rev.
8
,
L13
(
2014
).
44.
L.
Hu
and
G.
Chen
,
Nano Lett.
7
,
3249
(
2007
).
45.
S. M.
Sze
and
J. C.
Irvin
,
Solid State Electron.
11
,
599
(
1968
).

Supplementary Material

You do not currently have access to this content.