We report the discovery of a very large thermoelectric power over –400 μV K−1 in the whisker crystals of a one-dimensional telluride Ta4SiTe4, while maintaining a low electrical resistivity of ρ = 2 mΩ cm, yielding a very large power factor of P = 80 μW cm−1 K−2 at an optimum temperature of 130 K. This temperature is widely controlled from the cryogenic temperature of 50 K to room temperature by chemical doping, resulting in the largest P of 170 μW cm−1 K−2 at 220–280 K. These P values far exceed those of the Bi2Te3-Sb2Te3 alloys at around room temperature, offering an avenue for realizing the practical-level thermoelectric cooling at low temperatures. The coexistence of a one-dimensional electronic structure and a very small band gap appearing in the vicinity of the Dirac semimetals probably causes the very large power factors in Ta4SiTe4, indicating that the “one-dimensional Dirac semimetal” is a promising way to find high-performance thermoelectric materials for the low temperature applications.

1.
T. M.
Tritt
and
M. A.
Subramanian
,
MRS Bull.
31
,
188
(
2006
).
2.
R. P.
Huebener
and
C. C.
Tsuei
,
Cryogenics
38
,
325
(
1998
).
3.
T.
Metzger
and
R. P.
Huebener
,
Cryogenics
39
,
235
(
1999
).
4.
G. D.
Mahan
,
Solid State Physics
(
Academic Press
,
New York, USA
,
1997
), Vol. 51, pp.
81
157
.
5.
G.
Mahan
,
B.
Sales
, and
J.
Sharp
,
Phys. Today
50
(
3
),
42
(
1997
).
6.
W. M.
Yim
and
A.
Amith
,
Solid State Electron.
15
,
1141
(
1972
).
7.
D.-Y.
Chung
,
T.
Hogan
,
P.
Brazis
,
M.
Rocci-Lane
,
C.
Kannewurf
,
M.
Bastea
,
C.
Uher
, and
M. G.
Kanatzidis
,
Science
287
,
1024
(
2000
).
8.
D.-Y.
Chung
,
T. P.
Hogan
,
M.
Rocci-Lane
,
P.
Brazis
,
J. R.
Ireland
,
C. R.
Kannewurf
,
M.
Bastea
,
C.
Uher
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
126
,
6414
(
2004
).
9.
R. T.
Littleton
, IV
,
T. M.
Tritt
,
J. W.
Kolis
,
D. R.
Ketchum
,
N. D.
Lowhorn
, and
M. B.
Korzenski
,
Phys. Rev. B
64
,
121104
(
2001
).
10.
R. J.
Gambino
,
W. D.
Grobman
, and
A. M.
Toxen
,
Appl. Phys. Lett.
22
,
506
(
1973
).
11.
H. J.
Van Daal
,
P. B.
Van Aken
, and
K. H. J.
Buschow
,
Phys. Lett. A
49
,
246
(
1974
).
12.
A.
Bentien
,
S.
Johnsen
,
G. K. H.
Madsen
,
B. B.
Iversen
, and
F.
Steglich
,
EPL
80
,
17008
(
2007
).
13.
H.
Takahashi
,
R.
Okazaki
,
S.
Ishiwata
,
H.
Taniguchi
,
A.
Okutani
,
M.
Hagiwara
, and
I.
Terasaki
,
Nat. Commun.
7
,
12732
(
2016
).
14.
M. E.
Badding
and
F. J.
DiSalvo
,
Inorg. Chem.
29
,
3952
(
1990
).
15.
J.
Li
,
R.
Hoffmann
,
M. E.
Badding
, and
F. J.
DiSalvo
,
Inorg. Chem.
29
,
3943
(
1990
).
16.
M. E.
Badding
,
R. L.
Gitzendanner
,
R. P.
Ziebarth
, and
F. J.
DiSalvo
,
Mater. Res. Bull.
29
,
327
(
1994
).
17.
K.
Ahn
,
T.
Hughbanks
,
K. D. D.
Rathnayaka
, and
D. G.
Naugle
,
Chem. Mater.
6
,
418
(
1994
).
18.
A.
Stolovits
,
A.
Sherman
,
K.
Ahn
, and
R. K.
Kremer
,
Phys. Rev. B
62
,
10565
(
2000
).
19.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
,
WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(
Technische Universität Wien
,
Vienna
,
2001
).
20.
L. R.
Testardi
,
J. N.
Bierly
, Jr.
, and
F. J.
Donahoe
,
J. Phys. Chem. Solids
23
,
1209
(
1962
).
21.
V. A.
Greanya
,
W. C.
Tonjes
,
R.
Liu
,
C. G.
Olson
,
D.-Y.
Chung
, and
M. G.
Kanatzidis
,
Phys. Rev. B
65
,
205123
(
2002
).
22.
P.
Larson
,
S. D.
Mahanti
,
D.-Y.
Chung
, and
M. G.
Kanatzidis
,
Phys. Rev. B
65
,
045205
(
2002
).
23.
G. D.
Mahan
,
J. Appl. Phys.
65
,
1578
(
1989
).
24.
L. S.
Xie
,
L. M.
Schoop
,
E. M.
Seibel
,
Q. D.
Gibson
,
W.
Xie
, and
R. J.
Cava
,
APL Mater.
3
,
083602
(
2015
).
25.
A.
Yamakage
,
Y.
Yamakawa
,
Y.
Tanaka
, and
Y.
Okamoto
,
J. Phys. Soc. Jpn.
85
,
013708
(
2016
).
26.
G. A.
Slack
,
Solid State Physics
(
Academic Press
,
New York, USA
,
1979
), Vol. 34, pp.
1
71
.
You do not currently have access to this content.