Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

1.
In the statement of Scientific Background on the Nobel Prize in Physics 2014, Efficient blue light-emitting diodes leading to bright and energy-saving white light sources. Compiled by the Class for Physics of the Royal Swedish Academy of Sciences, October 7;
S.
Nakamura
,
Rev. Mod. Phys.
87
,
1139
(
2015
);
Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes
, edited by
S.
Nakamura
and
S. F.
Chichibu
(
Taylor & Francis
,
London
,
2000
).
2.
S. J.
Pearton
,
J. C.
Zolper
,
R. J.
Shul
, and
F.
Ren
,
J. Appl. Phys.
86
,
1
(
1999
).
3.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
,
Nature
441
,
325
(
2006
).
4.
C. G.
Van de Walle
and
J.
Neugebauer
,
Nature
423
,
626
(
2003
).
5.
H. J. M.
Swagten
,
G. J.
Strijkers
,
P. J. H.
Bloemen
,
M. M. H.
Willekens
, and
W.
DeJonge
,
Phys. Rev. B
53
,
9108
(
1996
).
6.
I.
Hotovy
,
J.
Huran
,
P.
Siciliano
,
S.
Capone
,
L.
Spiess
, and
V.
Rehacek
,
Sens. Actuators, B
78
,
126
(
2001
).
7.
M.
Matsumiya
,
F.
Qiu
,
W.
Shin
,
N.
Izu
,
N.
Murayama
, and
S.
Kanzaki
,
Thin Solid Films
419
,
213
(
2002
).
8.
M.
Kitao
,
K.
Izawa
,
K.
Urabe
,
T.
Komatsu
,
S.
Kuwano
, and
S.
Yamada
,
Jpn. J. Appl. Phys., Part 1
33
,
6656
(
1994
).
9.
H.
Sato
,
T.
Minami
,
S.
Takata
, and
T.
Yamada
,
Thin Solid Films
236
,
27
(
1993
).
10.
S.
Hüfner
,
J.
Osterwalder
,
T.
Riesterer
, and
F.
Hulliger
,
Solid State Commun.
52
,
793
(
1984
).
11.
D.
Kawade
,
S. F.
Chichibu
, and
M.
Sugiyama
,
J. Appl. Phys.
116
,
163108
(
2014
).
12.
D.
Alders
,
F. C.
Voogt
,
T.
Hibma
, and
G. A.
Sawatzky
,
Phys. Rev. B
54
,
7716
(
1996
).
13.
M.
Warasawa
,
Y.
Watanabe
,
J.
Ishida
,
Y.
Murata
,
S. F.
Chichibu
, and
M.
Sugiyama
,
Jpn. J. Appl. Phys., Part 1
52
,
021102
(
2013
).
14.
M.
Sugiyama
,
H.
Nakai
,
G.
Sugimoto
,
A.
Yamada
, and
S. F.
Chichibu
,
Jpn. J. Appl. Phys., Part 1
55
,
088003
(
2016
).
15.
N. F.
Mott
,
Proc. Phys. Soc. London, Sect. A
62
,
416
(
1949
).
16.
T.
Kamiya
,
H.
Ohta
,
M.
Kamiya
,
K.
Nomura
,
K.
Ueda
,
M.
Hirano
, and
H.
Hosono
,
J. Mater. Res.
19
,
913
(
2004
).
17.
M.
Yang
,
H.
Pu
,
Q.
Zhou
, and
Q.
Zhang
,
Thin Solid Films
520
,
5884
(
2012
).
18.
S. C.
Chen
,
T. Y.
Kuo
,
Y. C.
Lin
, and
H. C.
Lin
,
Thin Solid Films
519
,
4944
(
2011
).
19.
A.
Suzuki
,
S.
Choe
,
Y.
Yamada
,
N.
Otsuka
, and
D.
Ueda
,
Jpn. J. Appl. Phys., Part 1
55
,
121001
(
2016
).
20.
S. F.
Chichibu
,
H.
Yamaguchi
,
L.
Zhao
,
M.
Kubota
,
K.
Okamoto
, and
H.
Ohta
,
Appl. Phys. Lett.
92
,
091912
(
2008
).
21.
S. C.
Choi
,
K.
Koumoto
, and
H.
Yanagida
,
J. Mater. Sci.
21
,
1947
(
1986
).
22.
A. S.
Barker
and
M.
Ilegems
,
Phys. Rev. B
7
,
743
(
1973
).
23.
U.
Gerstmann
,
A. T.
Blumenau
, and
H.
Overhof
,
Phys. Rev. B
63
,
075204
(
2001
).
24.
K.
Hazu
,
A.
Fouda
,
T.
Nakayama
,
A.
Tanaka
, and
S. F.
Chichibu
,
Appl. Phys. Express
3
,
091102
(
2010
).
25.
M.
Mohamed
,
K.
Irmscher
,
C.
Janowitz
,
Z.
Galazka
,
R.
Manzke
, and
R.
Fornari
,
Appl. Phys. Lett.
101
,
132106
(
2012
).
26.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
152108
(
2010
).
27.
J.
Neugebauer
and
C. G.
Van de Walle
,
Appl. Phys. Lett.
69
,
503
(
1996
);
C. G.
Van de Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
,
3851
(
2004
).
28.
S.
Chichibu
,
T.
Azuhata
,
T.
Sota
, and
S.
Nakamura
,
J. Appl. Phys.
79
,
2784
(
1996
).
29.
S. F.
Chichibu
,
A.
Uedono
,
T.
Onuma
,
T.
Sota
,
B. A.
Haskell
,
S. P.
DenBaars
,
J. S.
Speck
, and
S.
Nakamura
,
Appl. Phys. Lett.
86
,
021914
(
2005
);
S. F.
Chichibu
,
K.
Hazu
,
Y.
Ishikawa
,
M.
Tashiro
,
H.
Namita
,
S.
Nagao
,
K.
Fujito
, and
A.
Uedono
,
J. Appl. Phys.
111
,
103518
(
2012
).
You do not currently have access to this content.