We suggest a three-dimensional metamaterial structure exhibiting an isotropic expansion in response to an increased hydrostatic pressure imposed by a surrounding gas or liquid. We show that this behavior corresponds to a negative absolute (rather than only differential) effective compressibility under truly static and stable conditions. The poroelastic metamaterial is composed of only a single ordinary constituent solid. By detailed numerical parameter studies, we find that a pressure increase of merely one bar can lead to a relative increase in the effective volume exceeding one percent for geometrical structure parameters that should be accessible to fabrication by 3D printing.

1.
A.
Sommerfeld
,
Mechanics of Deformable Bodies: Lectures on Theoretical Physics
(
New York, USA
,
Academic press
,
1950
), Vol.
2
.
2.
R.
Lakes
and
K. W.
Wojciechowski
,
Phys. Status Solidi B
245
,
545
(
2008
).
3.
R. H.
Baughman
,
S.
Stafström
,
C.
Cui
, and
S. O.
Dantas
,
Science
279
,
1522
(
1998
).
4.
J. N.
Grima
,
D.
Attard
,
R.
Caruana-Gauci
, and
R.
Gatt
,
Scr. Mater.
65
,
565
(
2011
).
5.
A. B.
Cairns
,
J.
Catafesta
,
C.
Levelut
,
J.
Rouquette
,
A.
Van Der Lee
,
L.
Peters
,
A. L.
Thompson
,
V.
Dmitriev
,
J.
Haines
, and
A. L.
Goodwin
,
Nat. Mater.
12
,
212
(
2013
).
6.
Z. G.
Nicolaou
and
A. E.
Motter
,
Nat. Mater.
11
,
608
(
2012
).
7.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
,
1734
(
2000
).
8.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
,
Nat. Mater.
5
,
452
(
2006
).
9.
Y.
Wu
,
Y.
Lai
, and
Z.-Q.
Zhang
,
Phys. Rev. Lett.
107
,
105506
(
2011
).
10.
R. V.
Craster
and
S.
Guenneau
,
Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking
(
Springer Science & Business Media
,
2012
), Vol.
166
.
11.
M.
Kadic
,
T.
Bückmann
,
R.
Schittny
, and
M.
Wegener
,
Rep. Prog. Phys.
76
,
126501
(
2013
).
12.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
,
Nat. Rev. Mater.
1
,
16001
(
2016
).
13.
14.
T.
Mullin
,
S.
Deschanel
,
K.
Bertoldi
, and
M.
Boyce
,
Phys. Rev. Lett.
99
,
084301
(
2007
).
15.
C.
Coulais
,
J. T.
Overvelde
,
L. A.
Lubbers
,
K.
Bertoldi
, and
M.
van Hecke
,
Phys. Rev. Lett.
115
,
044301
(
2015
).
16.
T.
Frenzel
,
C.
Findeisen
,
M.
Kadic
,
P.
Gumbsch
, and
M.
Wegener
,
Adv. Mater.
28
,
5865
(
2016
).
17.
18.
G. W.
Milton
,
The Theory of Composites
(
Cambridge University Press
,
Cambridge, UK
,
2002
).
19.
J.
Christensen
,
M.
Kadic
,
O.
Kraft
, and
M.
Wegener
,
MRS Commun.
5
,
453
(
2015
).
20.
V.
Kozlov
,
V.
Maz'ya
, and
A.
Movchan
,
Asymptotic Analysis of Fields in Multi-Structures
(
Oxford University Press
,
Oxford, UK
,
1999
).
21.
R.
Gatt
and
J. N.
Grima
,
Phys. Status Solidi RRL
2
,
236
(
2008
).
22.
R.
Lakes
,
Appl. Phys. Lett.
90
,
221905
(
2007
).
23.
L.
Wu
,
B.
Li
, and
J.
Zhou
,
ACS Appl. Mater. Interfaces
8
,
17721
(
2016
).
24.
Q.
Wang
,
J. A.
Jackson
,
Q.
Ge
,
J. B.
Hopkins
,
C. M.
Spadaccini
, and
N. X.
Fang
,
Phys. Rev. Lett.
117
,
175901
(
2016
).
25.
J.
Qu
,
M.
Kadic
,
A.
Naber
, and
M.
Wegener
,
Sci. Rep.
7
,
40643
(
2017
).
26.
M. A.
Biot
and
D. G.
Willis
,
J. Appl. Mech.
24
,
594
(
1957
), available at http://www.pmi.ou.edu/Biot2005/papers/FILES/068.PDF.
27.
R.
v. Mises
,
Nachr. Ges. Wiss. Göttingen
1913
,
582
(
1913
), available at https://eudml.org/doc/58894.
28.
T.
Bückmann
,
R.
Schittny
,
M.
Thiel
,
M.
Kadic
,
G. W.
Milton
, and
M.
Wegener
,
New J. Phys.
16
,
033032
(
2014
).
29.
T.
Bückmann
,
M.
Thiel
,
M.
Kadic
,
R.
Schittny
, and
M.
Wegener
,
Nat. Commun.
5
,
4130
(
2014
).
You do not currently have access to this content.