Black phosphorus is a layered material stacked together by weak van der Waals force with a direct bandgap and highly anisotropic electrical characteristics. Most of the previous reports focus on the low-field mobility of transistors based on SiO2 back gate dielectrics. Recently, black phosphorus transistors encapsulated with hexagonal boron nitride have been demonstrated with greatly improved mobility at low temperatures. However, this approach requires multiple dry transfer methods using both black phosphorus and boron nitride flakes, which are only available in small crystal sizes. Here, we demonstrated high performance black phosphorus transistors using atomic layer deposited high-κ HfO2 as a back gate dielectric. The maximum drain current density reaches 480 μA/μm at 300 K and a record high drain current 906 μA/μm at 20 K in a short channel 100 nm device based on HfO2, exhibiting excellent current-carrying capability and high field strength. Moreover, a side-by-side comparison on important figures-of-merit is carried out systematically for transistors based on HfO2 with those based on conventional SiO2, showing more than 50% performance improvement in mobility and over 8 times reduction in interface trap density.

1.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
(
2014
).
2.
F.
Xia
,
H.
Wang
, and
Y.
Jia
,
Nat. Commun.
5
,
4458
(
2014
).
3.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
Z.
Luo
,
X.
Xu
,
D.
Tománek
, and
P. D.
Ye
,
ACS Nano
8
,
4033
(
2014
).
4.
Y.
Liu
,
T.
Low
, and
P.
Paul Ruden
,
Phys. Rev. B
93
,
165402
(
2016
).
5.
J.
Qiao
,
X.
Kong
,
Z.-X.
Hu
,
F.
Yang
, and
W.
Ji
,
Nat. Commun.
5
,
4475
(
2014
).
6.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
L.
Yang
,
Phys. Rev. B
89
,
235319
(
2014
).
7.
Y.
Akahama
,
S.
Endo
, and
S.-I.
Narita
,
J. Phys. Soc. Jpn.
52
,
2148
(
1983
).
8.
H. O. H.
Churchill
and
P.
Jarillo-Herrero
,
Nat. Nanotechnol.
9
,
330
(
2014
).
9.
F.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
,
Nat. Photonics
8
,
899
(
2014
).
10.
M.
Buscema
,
D. J.
Groenendijk
,
S. I.
Blanter
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
,
Nano Lett.
14
,
3347
(
2014
).
11.
N.
Youngblood
,
C.
Chen
,
S. J.
Koester
, and
M.
Li
,
Nat. Photonics
9
,
247
(
2015
).
12.
M.
Huang
,
M.
Wang
,
C.
Chen
,
Z.
Ma
,
X.
Li
,
J.
Han
, and
Y.
Wu
,
Adv. Mater.
28
,
3481
(
2016
).
13.
S.
Das
,
W.
Zhang
,
L.
Raju Thoutam
,
Z.
Xiao
,
A.
Hoffmann
,
M.
Demarteau
, and
A.
Roelofs
,
IEEE Electron Device Lett.
36
,
621
(
2015
).
14.
H.
Wang
,
X.
Wang
,
F.
Xia
,
L.
Wang
,
H.
Jiang
,
Q.
Xia
,
M. L.
Chin
,
M.
Dubey
, and
S-j.
Han
,
Nano Lett.
14
,
6424
(
2014
).
15.
J. S.
Kim
,
P. J.
Jeon
,
J.
Lee
,
K.
Choi
,
H. S.
Lee
,
Y.
Cho
,
Y. T.
Lee
,
D. K.
Hwang
, and
S.
Im
,
Nano Lett.
15
,
5778
(
2015
).
16.
A. D.
Franklin
,
Science
349
,
aab2750
(
2015
).
17.
W.
Zhu
,
S.
Park
,
M. N.
Yogeesh
,
K. M.
McNicholas
,
S. R.
Bank
, and
D.
Akinwande
,
Nano Lett.
16
,
2301
(
2016
).
18.
X.
Chen
,
Y.
Wu
,
Z.
Wu
,
Y.
Han
,
S.
Xu
,
L.
Wang
,
W.
Ye
,
T.
Han
,
Y.
He
,
Y.
Cai
, and
N.
Wang
,
Nat. Commun.
6
,
7315
(
2015
).
19.
L.
Li
,
F.
Yang
,
G. J.
Ye
,
Z.
Zhang
,
Z.
Zhu
,
W.
Lou
,
X.
Zhou
,
L.
Li
,
K.
Watanabe
,
T.
Taniguchi
,
K.
Chang
,
Y.
Wang
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
11
,
593
(
2016
).
20.
G.
Long
,
D.
Maryenko
,
J.
Shen
,
S.
Xu
,
J.
Hou
,
Z.
Wu
,
W. K.
Wong
,
T.
Han
,
J.
Lin
,
Y.
Cai
,
R.
Lortz
, and
N.
Wang
,
Nano Lett.
16
,
7768
(
2016
).
21.
K. L.
Ganapathi
,
S.
Bhattacharjee
,
S.
Mohan
, and
N.
Bhat
,
IEEE Electron Device Lett.
37
,
797
(
2016
).
22.
Y.
Cui
,
R.
Xin
,
Z.
Yu
,
Y.
Pan
,
Z.-Y.
Ong
,
X.
Wei
,
J.
Wang
,
H.
Nan
,
Z.
Ni
,
Y.
Wu
,
T.
Chen
,
Y.
Shi
,
B.
Wang
,
G.
Zhang
,
Y.-W.
Zhang
, and
X.
Wang
,
Adv. Mater.
27
,
5230
(
2015
).
23.
Z.
Yu
,
Z.-Y.
Ong
,
Y.
Pan
,
Y.
Cui
,
R.
Xin
,
Y.
Shi
,
B.
Wang
,
Y.
Wu
,
T.
Chen
,
Y.-W.
Zhang
,
G.
Zhang
, and
X.
Wang
,
Adv. Mater.
28
,
547
(
2016
).
24.
N.
Haratipour
,
M. C.
Robbins
, and
S. J.
Koester
,
IEEE Electron Device Lett.
36
,
411
(
2015
).
25.
Z.-P.
Ling
,
J.-T.
Zhu
,
X.
Liu
, and
K.-W.
Ang
,
Sci. Rep.
6
,
26609
(
2016
).
26.
N.
Haratipour
and
S. J.
Koester
,
IEEE Electron Device Lett.
37
,
103
(
2016
).
27.
N.
Haratipour
,
S.
Namgung
,
S.-H.
Oh
, and
S. J.
Koester
,
ACS Nano
10
,
3791
(
2016
).
28.
S. Y.
Chou
and
D.
Antoniadis
,
IEEE Electron Device Lett.
34
,
448
(
1987
).
29.
B.
Radisavljevic
and
A.
Kis
,
Nat. Mater.
12
,
815
(
2013
).
30.
Z.-Y.
Ong
and
M. V.
Fischetti
,
Phys. Rev. B
86
,
121409
(
2012
).
31.
Y.
Du
,
L.
Yang
,
H.
Zhou
, and
P. D.
Ye
,
IEEE Electron Device Lett.
37
,
429
(
2016
).
32.
L.
Li
,
M.
Engel
,
D. B.
Farmer
,
S-J.
Han
, and
H. S.
Philip Wong
,
ACS Nano
10
,
4672
(
2016
).
33.
L. M.
Yang
,
G.
Qiu
,
M. W.
Si
,
A. R.
Charnas
,
C. A.
Milligan
,
D. Y.
Zemlyanov
,
H.
Zhou
,
Y. C.
Du
,
Y. M.
Lin
,
W.
Tsai
,
Q.
Paduano
,
M.
Snure
, and
P. D.
Ye
,
IEEE Int. Electron Devices Meet.
2016
,
5.5.1
.
You do not currently have access to this content.