The resonance frequency of a nonlinear micromechanical resonator has a dependence on its modal amplitude known as the A–f effect. Here, we experimentally demonstrated that the A–f effect can be limited by the mode interaction in micromechanical resonators. The clamped-clamped beam resonator investigated in this work has a nonlinear in-plane (IP) vibration mode and a linear out-of-plane (OOP) vibration mode. In the case of single ended driving with various Vdc, the resonance frequency of the IP mode tuned through the A–f effect reaches that of the OOP mode and is limited by the OOP mode due to the modal interaction and electrostatic softening effect. In the case of double ended driving, however, the resonance frequency of the IP mode is latched to that of the OOP mode after A–f tuning and a frequency stabilized region is observed. A theoretical model is also put forward to explain this phenomenon through numerical simulations.

1.
R.
Abdolvand
,
B.
Bahreyni
,
J. E.-Y.
Lee
, and
F.
Nabki
,
Micromachines
7
,
160
(
2016
).
2.
M.
Sansa
,
M.
Fernández-Regúlez
,
J.
Llobet
,
Á.
San Paulo
, and
F.
Pérez-Murano
,
Nat. Commun.
5
,
4313
(
2014
).
3.
A. M.
Elshurafa
,
K.
Khirallah
,
H. H.
Tawfik
, and
A.
Emira
,
J. Microelectromech. Syst.
20
,
943
(
2011
).
4.
L.
Ron and
and
M. C.
Cross
,
Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators
(
2008
), Chap. 1, pp.
1
52
.
5.
C.
Van der Avoort
,
R.
Van der Hout
,
J. J. M.
Bontemps
,
P. G.
Steeneken
,
K. L.
Phan
,
R. H. B.
Fey
,
J.
Hulshof
, and
J. T. M.
Van Beek
,
J. Micromech. Microeng.
20
,
105012
(
2010
).
6.
D.
Antonio
,
D. H.
Zanette
, and
D.
López
,
Nat. Commun.
3
,
806
(
2012
).
7.
P.
Mohanty
,
D. A.
Harrington
,
K. L.
Ekinci
,
Y. T.
Yang
,
M. J.
Murphy
, and
M. L.
Roukes
,
Phys. Rev. B
66
,
085416
(
2002
).
8.
J.
Charmet
,
R.
Daly
,
P.
Thiruvenkatanathan
, and
A. A.
Seshia
,
Appl. Phys. Lett.
107
,
043502
(
2015
).
9.
H.
Westra
,
M.
Poot
,
H.
Van Der Zant
, and
W.
Venstra
,
Phys. Rev. Lett.
105
,
117205
(
2010
).
10.
P. N.
Kambali
,
G.
Swain
,
A. K.
Pandey
,
E.
Buks
, and
O.
Gottlieb
,
Appl. Phys. Lett.
107
,
063104
(
2015
).
11.
K.
Lulla
,
R.
Cousins
,
A.
Venkatesan
,
M.
Patton
,
A.
Armour
,
C.
Mellor
, and
J.
Owers-Bradley
,
New J. Phys.
14
,
113040
(
2012
).
12.
T.
Faust
,
J.
Rieger
,
M. J.
Seitner
,
P.
Krenn
,
J. P.
Kotthaus
, and
E. M.
Weig
,
Phys. Rev. Lett.
109
,
037205
(
2012
).
13.
P.
Truitt
,
J.
Hertzberg
,
E.
Altunkaya
, and
K.
Schwab
,
J. Appl. Phys.
114
,
114307
(
2013
).
14.
Y.
Yang
,
E.
Ng
,
P.
Polunin
,
Y.
Chen
,
S.
Strachan
,
V.
Hong
,
C. H.
Ahn
,
O.
Shoshani
,
S.
Shaw
,
M.
Dykman
 et al., in
2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
(
2015
), pp.
1008
1011
.
15.
T.
Zhang
,
J.
Ren
,
X.
Wei
,
Z.
Jiang
, and
R.
Huan
,
Appl. Phys. Lett.
109
,
224102
(
2016
).
16.
X.
Wei
and
A. A.
Seshia
,
IET Micro Nano Lett.
8
,
107
(
2013
).
17.
M.
Agarwal
,
S. A.
Chandorkar
,
H.
Mehta
,
R. N.
Candler
,
B.
Kim
,
M. A.
Hopcroft
,
R.
Melamud
,
C. M.
Jha
,
G.
Bahl
,
G.
Yama
 et al.,
Appl. Phys. Lett.
92
,
104106
(
2008
).
You do not currently have access to this content.