Resistively switching memory cells (ReRAM) are strong contenders for next-generation non-volatile random access memories. In this paper, we present ReRAM cells on flexible substrates consisting of Ag/spin-on-glass/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate). The complete cell is fabricated using a standard inkjet printer without additional process steps. Investigations on the spin-on-glass insulating layer showed that low sintering temperatures are sufficient for good switching behavior, providing compatibility with various foils. The cells feature low switching voltages, low write currents, and a high ratio between high and low resistance state of 104. Combined with excellent switching characteristics under bending conditions, these results pave the way for low-power and low-cost memory devices for future applications in flexible electronics.

1.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
(
2008
).
2.
I.
Valov
,
R.
Waser
,
J. R.
Jameson
, and
M. N.
Kozicki
,
Nanotechnology
22
,
289502
(
2011
).
3.
P.
Vilmi
,
M.
Nelo
,
J. V.
Voutilainen
,
J.
Palosaari
,
J.
Pörhönen
,
S.
Tuukkanen
,
H.
Jantunen
,
J.
Juuti
, and
T.
Fabritius
,
Flexible Printed Electron.
1
,
025002
(
2016
).
4.
K.
Rahman
,
M.
Mustafa
,
N. M.
Muhammad
, and
K. H.
Choi
,
Electron. Lett.
48
,
1261
(
2012
).
5.
S.
Ali
,
J.
Bae
,
C. H.
Lee
,
K. H.
Choi
, and
Y. H.
Doh
,
Org. Electron.
25
,
225
(
2015
).
6.
S.
Zou
,
P.
Xu
, and
M. C.
Hamilton
,
Electron. Lett.
49
,
829
(
2013
).
7.
R. R.
Søndergaard
,
M.
Hösel
, and
F. C.
Krebs
,
J. Polym. Sci., Part B: Polym. Phys.
51
,
16
(
2013
).
8.
M.
Morales-Masis
,
S. J.
Van der Molen
,
W. T.
Fu
,
M. B.
Hesselberth
, and
J. M.
Ruitenbeek
,
Nanotechnology
20
,
095710
(
2009
).
9.
Y. C.
Yang
,
F.
Pan
,
Q.
Liu
,
M.
Liu
, and
F.
Zeng
,
Nano Lett.
9
,
1636
(
2009
).
10.
C.
Schindler
,
S. C. P.
Thermadam
,
R.
Waser
, and
M. N.
Kozicki
,
IEEE Trans. Electron Devices
54
,
2762
(
2007
).
11.
M. N.
Kozicki
,
M.
Park
, and
M.
Mitkova
,
IEEE Trans. Nanotechnol.
4
,
331
(
2005
).
12.
W.-J.
Joo
,
T.-L.
Choi
,
K.-H.
Lee
, and
Y.
Chung
,
J. Phys. Chem. B
111
,
7756
(
2007
).
13.
M.
Meier
,
S.
Gilles
,
R.
Rosezin
,
C.
Schindler
,
S.
Trellenkamp
,
A.
Rüdiger
,
D.
Mayer
,
C.
Kügeler
, and
R.
Waser
,
Microelectron. Eng.
86
,
1060
(
2009
).
14.
C. M.
Osburn
and
D. W.
Ormond
,
J. Electrochem. Soc.
119
,
597
(
1972
).
15.
E.
Kondoh
,
M. R.
Baklanov
,
E.
Lin
,
D.
Gidley
, and
A.
Nakashima
,
Jpn. J. Appl. Phys.
40
(
4A
),
L323
(
2001
).
16.
M. A.
Zidan
,
H. A. H.
Fahmy
,
M. M.
Hussain
, and
K. N.
Salama
,
Microelectron. J.
44
,
176
(
2013
).
17.
E.
Tekin
,
P. J.
Smith
, and
U. S.
Schubert
,
Soft Matter
4
,
703
(
2008
).
18.
C. Y.
Dong
,
D. S.
Shang
,
L.
Shi
,
J. R.
Sun
,
B. G.
Shen
,
F.
Zhuge
,
R. W.
Li
, and
W.
Chen
,
Appl. Phys. Lett.
98
,
72107
(
2011
).
19.
T. M.
Maffitt
,
J. K.
DeBrosse
,
J. A.
Gabric
,
E. T.
Gow
,
M. C.
Lamorey
,
J. S.
Parenteau
,
D. R.
Willmott
,
M. A.
Wood
, and
W. J.
Gallagher
,
IBM J. Res. Dev.
50
,
25
(
2006
).
20.
C.
Schwarz
,
M.
Kaiser
,
S. F.
Jacob
, and
C.
Schindler
,
Phys. Status Solidi A
213
,
1353
(
2016
).
21.
C.
Schindler
,
K.
Szot
,
S.
Karthäuser
, and
R.
Waser
,
Phys. Status Solidi RRL
2
,
129
(
2008
).
22.
F.
Pan
,
S.
Gao
,
C.
Chen
,
C.
Song
, and
F.
Zeng
,
Mater. Sci. Eng. RRL
83
,
1
(
2014
).
23.
M. T.
Ghoneim
,
M. A.
Zidan
,
M. Y.
Alnassar
,
A. N.
Hanna
,
J.
Kosel
,
K. N.
Salama
, and
M. M.
Hussain
,
Adv. Electron. Mater.
1
,
1500045
(
2015
).
24.
M.
Meier
,
R.
Rosezin
,
S.
Gilles
,
A.
Ruediger
,
C.
Kuegeler
, and
R.
Waser
, in
IEEE 10th International Conference on Ultimate Integration of Silicon (ULIS)
(
2009
), p.
143
.
25.
T.
Kawase
,
H.
Sirringhaus
,
R. H.
Friend
, and
T.
Shimoda
,
Adv. Mater.
13
,
1601
(
2001
).
26.
E.
Linn
,
R.
Rosezin
,
C.
Kügeler
, and
R.
Waser
,
Nat. Mater.
9
,
403
(
2010
).
You do not currently have access to this content.