Ultraviolet photodetectors have attracted considerable interest for a variety of applications in health, industry, and science areas. Self-driven visible-blind photodetectors represent an appealing type of sensor, due to the reduced size and high flexibility. In this work, we employed BaTiO3 (BTO) single crystals with a bandgap of 3.2 eV for the realization of a self-driven ultraviolet detector, by utilizing the ferroelectric properties of BTO. We found that the sign of the photocurrent can be reversed by flipping the ferroelectric polarization, which makes the photodetector suitable for electrical manipulation. The photoelectric performance of this photodetector was systematically investigated in terms of rectification character, stability of short-circuit photocurrent, spectral response, and transient photoelectric response. Particularly, the self-driven photodetectors based on BTO showed an ultrafast response time about 200 ps. It is expected that the present work can provide a route for the design of photodetectors based on ferroelectric oxides.

1.
M.
Razeghi
and
A.
Rogalski
,
J. Appl. Phys.
79
(
10
),
7433
(
1996
).
2.
Z. L.
Wang
,
Adv. Mater.
24
(
2
),
280
285
(
2012
).
3.
Z.
Lou
,
L. D.
Li
, and
G. Z.
Shen
,
Nano Res.
8
(
7
),
2162
2169
(
2015
).
4.
X. L.
Zhao
,
Z. P.
Wu
,
D. Y.
Guo
,
W.
Cui
,
P. G.
Li
,
Y. H.
An
,
L. H.
Li
, and
W. H.
Tang
,
Semicond. Sci. Technol.
31
(
6
),
065010
(
2016
).
5.
M. L.
Ai
,
D. Y.
Guo
,
Y. Y.
Qu
,
W.
Cui
,
Z. P.
Wu
,
P. G.
Li
,
L. H.
Li
, and
W. H.
Tang
,
J. Alloys compd.
692
,
634
638
(
2016
).
6.
H. W.
Chen
,
N.
Sakai
,
A. K.
Jena
,
Y.
Sanehira
,
M.
Ikegami
,
K. C.
Ho
, and
T.
Miyasaka
,
J. Phys. Chem. Lett.
6
(
9
),
1773
1779
(
2015
).
7.
G.
Maculan
,
A. D.
Sheikh
,
A. L.
Abdelhady
,
M. I.
Saidaminov
,
M. A.
Haque
,
B.
Murali
,
E.
Alarousu
,
O. F.
Mohammed
,
T.
Wu
, and
O. M.
Bakr
,
J. Phys. Chem. Lett.
6
(
19
),
3781
3786
(
2015
).
8.
M.
Laurenti
,
G.
Canavese
,
A.
Sacco
,
M.
Fontana
,
K.
Bejtka
,
M.
Castellino
,
C. F.
Pirri
, and
V.
Cauda
,
Adv. Mater.
27
(
28
),
4218
4223
(
2015
).
9.
D. B.
Li
,
X. J.
Sun
,
H.
Song
,
Z. M.
Li
,
H.
Jiang
,
Y. R.
Chen
,
G. Q.
Miao
, and
B.
Shen
,
Appl. Phys. Lett.
99
(
26
),
261102
(
2011
).
10.
A.
Sciuto
,
F.
Roccaforte
,
S. D.
Franco
,
V.
Raineri
, and
G.
Bonanno
,
Appl. Phys. Lett.
89
(
8
),
081111
(
2006
).
11.
Y. Z.
Jin
,
J. P.
Wang
,
B. Q.
Sun
,
J. C.
Blakesley
, and
N. C.
Greenham
,
Nano Lett.
8
(
6
),
1649
1653
(
2008
).
12.
F. W.
Guo
,
B.
Yang
,
Y. B.
Yuan
,
Z. G.
Xiao
,
Q. F.
Dong
,
Y.
Bi
, and
J. S.
Huang
,
Nat. Nanotechnol.
7
(
12
),
798
802
(
2012
).
13.
X. J.
Hou
,
B.
Liu
,
X. F.
Wang
,
Z. R.
Wang
,
Q. F.
Wang
,
D.
Chen
, and
G. Z.
Shen
,
Nanoscale
5
(
17
),
7831
7837
(
2013
).
14.
J.
Ding
,
H. J.
Fang
,
Z. P.
Lian
,
J. W.
Li
,
Q. R.
Lv
,
L. D.
Wang
,
J. L.
Sun
, and
Q. F.
Yan
,
Cryst. Eng. Commun.
18
(
23
),
4405
4411
(
2016
).
15.
B. K.
Gan
,
K.
Yao
,
S. C.
Lai
,
P. C.
Goh
, and
Y. F.
Chen
,
IEEE Electron Device Lett.
32
(
5
),
665
667
(
2011
).
16.
T.
Palacios
,
E.
Monroy
,
F.
Calle
, and
F.
Omnès
,
Appl. Phys. Lett.
81
(
10
),
1902
(
2002
).
17.
Q.
Chen
,
M. A.
Khan
, and
J. W.
Yang
,
Electron. Lett.
31
(
20
),
1781
1782
(
1995
).
18.
S. N.
Lu
,
J. J.
Qi
,
S.
Liu
,
Z.
Zhang
,
Z. Z.
Wang
,
P.
Lin
,
Q. L.
Liao
,
Q. j.
Liang
, and
Y.
Zhang
,
ACS Appl. Mater. Interfeces
6
(
16
),
14116
14122
(
2014
).
19.
Y. Q.
Bie
,
Z. M.
Liao
,
H. Z.
Zhang
,
G. R.
Li
,
Y.
Ye
,
Y. B.
Zhou
,
J.
Xu
,
Z. X.
Qin
,
L.
Dai
, and
D. P.
Yu
,
Adv. Mater.
23
(
5
),
649
653
(
2011
).
20.
L. Z.
Tan
,
F.
Zheng
,
S. M.
Young
,
F.
Wang
,
S.
Liu
, and
A. M.
Rappe
,
NPJ Comput. Mater.
2
,
16026
(
2016
).
21.
M. R.
Morris
,
S. R.
Pendlebury
,
J.
Hong
,
S.
Dunn
, and
J. R.
Durrant
,
Adv. Mater.
28
(
33
),
7123
7128
(
2016
).
22.
B. K.
Gan
,
K.
Yao
,
S. C.
Lai
,
Y. F.
Chen
, and
P. C.
Goh
,
IEEE Electron Device Lett.
29
(
11
),
1215
1217
(
2008
).
23.
A. G.
Chynoweth
,
Phys. Rev.
102
,
705
(
1956
).
24.
W. T. H.
Koch
,
R.
Munser
,
W.
Ruppel
, and
P.
Würfel
,
Solid State Commun.
17
,
847
(
1975
).
25.
S. C.
Lai
,
K.
Yao
,
Y. F.
Chen
,
L.
Zhang
, and
Y. F.
Lim
,
IEEE Electron Device Lett.
34
(
11
),
1427
1429
(
2013
).
26.
A.
Zomorrodian
,
N. J.
Wu
,
Y.
Song
,
S.
Stahl
,
A.
Ignatiev
,
E. B.
Trexler
, and
C. A.
Garcia
,
Jpn. J. Appl. Phys., Part 2
44
,
6105
6108
(
2005
).
27.
C. J.
Won
,
Y. A.
Park
,
K. D.
Lee
,
H. Y.
Ryu
, and
N.
Hur
,
J. Appl. Phys.
109
(
8
),
084108
(
2011
).
28.
R. E.
Cohen
,
Nature
358
(
9
),
136
138
(
1992
).
29.
C.
Ge
,
K. J.
Jin
,
C.
Wang
,
H. B.
Lu
,
C.
Wang
, and
G. Z.
Yang
,
Appl. Phys. Lett.
99
,
063509
(
2011
).
30.
K.
Uchino
,
Y.
Miyazawa
, and
S.
Nomura
,
Jpn. J. Appl. Phys., Part 2
21
,
1671
1674
(
1982
).
31.
O.
Game
,
U.
Singh
,
T.
Kumari
,
A.
Banpurkar
, and
S.
Ogale
,
Nanoscale
6
,
503
513
(
2014
).
32.
X.
Li
,
C.
Gao
,
H.
Duan
,
B.
Lu
,
Y.
Wang
,
L.
Chen
,
Z.
Zhang
,
X.
Pan
, and
E.
Xie
,
Small
9
(
11
),
2005
2011
(
2013
).
33.
T.
Choi
,
S.
Lee
,
Y. J.
Choi
,
V.
Kiryukhin
, and
S. W.
Cheong
,
Science
324
(
3
),
63
67
(
2009
).
34.
E. J.
Guo
,
J.
Xing
,
K. J.
Jin
,
H. B.
Lu
,
J.
Wen
, and
G. Z.
Yang
,
J. Appl. Phys.
106
(
2
),
023114
(
2009
).
35.
J. T.
Yang
,
C.
Ge
,
K. J.
Jin
,
H. B.
Lu
, and
G. Z.
Yang
,
Appl. Opt.
55
(
9
),
2259
2262
(
2016
).
You do not currently have access to this content.