With a large-area field electron emitter, when an individual post-like emitter is sufficiently resistive, and current through it is sufficiently large, then voltage loss occurs along it. This letter provides a simple analytical and conceptual demonstration that this voltage loss is directly and inextricably linked to a reduction in the field enhancement factor (FEF) at the post apex. A formula relating apex-FEF reduction to this voltage loss was obtained in the paper by Minoux et al. [Nano Lett. 5, 2135 (2005)] by fitting to numerical results from a Laplace solver. This letter derives the same formula analytically, by using a “floating sphere” model. The analytical proof brings out the underlying physics more clearly and shows that the effect is a general phenomenon, related to reduction in the magnitude of the surface charge in the most protruding parts of an emitter. Voltage-dependent FEF-reduction is one cause of “saturation” in Fowler-Nordheim (FN) plots. Another is a voltage-divider effect, due to measurement-circuit resistance. An integrated theory of both effects is presented. Both together, or either by itself, can cause saturation. Experimentally, if saturation occurs but voltage loss is small (<20 V, say), then saturation is more probably due to FEF-reduction than voltage division. In this case, existing treatments of electrostatic interaction ("shielding") between closely spaced emitters may need modification. Other putative causes of saturation exist, so the present theory is a partial story. Its extension seems possible and could lead to a more general physical understanding of the causes of FN-plot saturation.

1.
M. T.
Cole
,
M.
Mann
,
K. B. K.
Teo
, and
W. I.
Milne
, “
Engineered carbon nanotube field emission devices
,” in
Emerging Nanotechnologies for Manufacturing
, 2nd ed., edited by
W.
Ahmad
and
M. J.
Jackson
(
Elsevier
,
2015
), Chap. 5.
2.
Y.
Li
,
Y.
Sun
, and
J. T. W.
Yeo
,
Nanotechnology
26
,
242001
(
2015
).
3.
N.
Shimoi
and
S.-I.
Tanaka
,
ACS Appl. Mater. Interfaces
5
,
768
(
2013
).
4.
R. G.
Forbes
,
J. Appl. Phys.
120
,
054302
(
2016
).
5.
R. G.
Forbes
,
C. J.
Edgcombe
, and
U.
Valdrè
,
Ultramicroscopy
95
,
57
(
2003
).
6.
A. I.
Zhbanov
,
E. G.
Pogorelov
,
Y.-C.
Chang
, and
Y.-G.
Lee
,
J. Appl. Phys.
110
,
114311
(
2011
).
7.
J. R.
Harris
,
K. L.
Jensen
, and
D. A.
Shiffler
,
AIP Adv.
5
,
087182
(
2015
).
8.
W. W.
Tang
,
D. A.
Shiffler
,
J. R.
Harris
,
K. L.
Jensen
,
K.
Golby
,
M.
LaCour
, and
T.
Knowles
,
AIP Adv.
6
,
095007
(
2016
).
9.
Thermodynamic voltage
” is voltage V as defined in terms of a difference ΔΕF of local Fermi levels, by V = –ΔΕF/E, where e is the elementary positive charge, and as measured by galvanometric and digital voltmeters.
10.
O.
Gröning
,
O. M.
Küttel
,
P.
Gröning
, and
L.
Schlapbach
,
J. Vac. Sci. Technol. B
17
,
1970
(
1999
).
11.
E.
Minoux
,
O.
Groening
,
K. B. K.
Teo
,
S. H.
Dalal
,
L.
Gangloff
,
J.-P.
Schnell
,
L.
Hudanski
,
I. Y. Y.
Bu
,
P.
Vincent
,
P.
Legagneux
,
G. A. J.
Amaratunga
, and
W. I.
Milne
,
Nano Lett.
5
,
2135
(
2005
).
12.
R. G.
Forbes
,
J. H. B.
Deane
,
A.
Fischer
, and
M. S.
Mousa
, “
Fowler-Nordheim Plot Analysis: a Progress Report
,”
Jordan J. Phys.
8
,
125
(
2015
); eprint arXiv:1504.06134v7.
13.
R. G.
Forbes
and
J. H. B.
Deane
,
Proc. R. Soc. London, Ser. A
467
,
2927
(
2011
). See related electronic supplementary material on Royal Society website for details of universal constants used in field emission.
14.
E.
Miranda
,
Electron. Lett.
40
,
1153
(
2004
).
15.
M. J.
Fransen
,
Th. L.
van Rooy
, and
P.
Kruit
,
Appl. Surf. Sci.
146
,
312
(
1999
).
16.
M. S.
Mousa
and
T. F.
Kelly
.
Surf. Interface Anal.
36
,
444
(
2004
).
17.
A.
Modinos
,
Field, Thermionic and Secondary Electron Emission Spectroscopy
(
Plenum
,
New York
,
1984
; Reprinted: Springer, New York, 2013).
You do not currently have access to this content.