The native defects in zirconium oxide (ZrO2) and defects at the ZrO2/Si interface lead to threshold voltage shifts, Fermi level pinning, and various other reliability concerns. It is necessary to recognize the origin of these defects and to quantify them. A large number of theoretical reports deal with oxygen vacancy related defect states in the ZrO2 films; however, the large band gap limits the experimental assessments. In this study, we have deployed Deep Level Transient Spectroscopy to study the deep level defects present in high-κ ZrO2 gate dielectrics and at the Si:ZrO2 interface. The band alignment of the Al/ZrO2/Si stack was derived from Ultraviolet Photo electron Spectroscopy measurement to find the exact locations of trap levels. Five deep levels were observed in the band gap of ZrO2; these are related to different charge states of oxygen vacancies. The activation energies of these trap states are in the range of 1.16–1.84 eV from the ZrO2 conduction band. The capture cross-section of these states was also measured and found to be quite low (10−21 cm2). The small value of capture cross-sections is attributed to tunneling events occurring between the energy levels of the bulk and interface. This study would aid in the understanding of numerous fascinating facts witnessed in ZrO2, such as resistive switching, threshold voltage instabilities, and leakage current problems associated with oxygen vacancy related traps.

1.
A.
Javey
,
H.
Kim
,
M.
Brink
,
Q.
Wang
,
A.
Ural
,
J.
Guo
,
P.
McIntyre
,
P.
McEuen
,
M.
Lundstrom
, and
H.
Dai
,
Nat. Mat.
1
,
241
(
2002
).
2.
A. I.
Kingon
,
J. P.
Maria
, and
S. K.
Streiffer
,
Nature
406
,
1032
(
2000
).
3.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
4.
J.
Robertson
and
R. M.
Wallace
,
Mater Sci Eng R
88
,
1
(
2015
).
5.
A.
Kumar
,
S.
Mondal
, and
K. S. R.
Koteswara Rao
,
Appl. Phys. A
122
,
1027
(
2016
).
6.
A.
Kumar
,
S.
Mondal
, and
K. S. R.
Koteswara Rao
,
J. Mater Sci Mater Electron
27
,
5264
(
2016
).
7.
S.
Mondal
and
V.
Venkataraman
,
IEEE Electron Device Lett.
37
,
396
(
2016
).
8.
A.
Kumar
,
S.
Mondal
, and
K. S. R. K.
Rao
,
Appl. Surf. Sci.
370
,
373
(
2016
).
9.
D.
Panda
and
T. Y.
Tseng
,
Thin Solid Films
531
,
1
(
2013
).
10.
A. S.
Foster
,
F.
Lopez Gejo
,
A. L.
Shluger
, and
R. M.
Nieminen
,
Phys. Rev. B
65
,
174117
(
2002
).
11.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B
65
,
75105
(
2002
).
12.
J. X.
Zheng
,
G.
Ceder
,
T.
Maxisch
,
W. K.
Chim
, and
W. K.
Choi
,
Phys. Rev. B
75
,
104112
(
2007
).
13.
V.
Fiorentini
and
G.
Gulleri
,
Phys. Rev. Lett.
89
,
266101
(
2002
).
14.
Y.
Wang
,
F.
Zahid
,
J.
Wang
, and
H.
Guo
,
Phys. Rev. B
85
,
224110
(
2012
).
15.
K.
Joy
,
I. J.
Berlin
,
P. B.
Nair
,
J. S.
Lakshmi
,
G. P.
Daniel
, and
P. V.
Thomas
,
J. Phys. Chem. Solids
72
,
673
(
2011
).
16.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
17.
E.
Bersch
,
S.
Rangan
,
R. A.
Bartynski
,
E.
Garfunkel
, and
E.
Vescovo
,
Phys. Rev. B
78
,
85114
(
2008
).
18.
A.
Kumar
,
S.
Mondal
, and
K. S. R. K.
Rao
,
AIP Adv.
5
,
117122
(
2015
).
19.
H. M.
Li
,
G.
Zhang
, and
W. J.
Yoo
,
Thin Solid Films
518
,
6382
(
2010
).
20.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
), pp.
402
406
.
21.
C.
Tang
and
R.
Ramprasad
,
Appl. Phys. Lett.
92
,
182908
(
2008
).
22.
X.
Zhao
,
D.
Ceresoli
, and
D.
Vanderbilt
,
Phys. Rev. B
71
,
85107
(
2005
).
23.
M. Y. A.
Yousif
,
M.
Johansson
, and
O.
Engström
,
Appl. Phys. Lett.
90
,
203506
(
2007
).
24.
S.
Kundu
,
Y.
Anitha
,
S.
Chakraborty
, and
P.
Banerji
,
J. Vac. Sci. Technol. B
30
,
051206
(
2012
).

Supplementary Material

You do not currently have access to this content.